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Abstract 

A virtual world system is an artificial environment, cre- 
ated inside a computer, which mimics some aspect of the 
real world. These systems are multiuser, allowing many 
people to be present and to interact simultaneously in the 
virtual world. The performance of virtual world systems is 
important because the quality of the user’s experience de- 
pends on the responsiveness of the system. This paper looks 
at issues involved in evaluating the performance of such 
multiuser virtual world systems. A Jexible, object-oriented 
framework is presented for supporting these evaluations ex- 
perimentally. As an example of its usage, this framework 
is applied to real virtual world system and some results are 
presented and discussed. 

1. Introduction 

Virtual world systems are characterised by client-server 
network systems aimed at allowing multiple clients to in- 
teract with each other and a virtual ‘environment’. Virtual 
world systems span many different areas, from multiplayer 
games, Intemet chat rooms and cellular mobile phone sys- 
tems, to collaborative computing, video conferencing and 
tele-presence systems, to emerging e-commerce applica- 
tions such as real-time auctions and real-time stock day 
trading. 

Virtual world systems aim to be as realistic as possible. 
One of the most important aspects of this is the responsive- 
ness of the system. This paper focuses on evaluating the 
performance of the system as a whole, but in particular the 
network and how it affects the responsiveness of the system. 

In terms of server setup, there are three types of virtual 
world systems. 

1. Single-server systems consist of one server to which 
all the clients are connected. 

2. Multi-server systems consist of multiple servers col- 
lected at a single Intemet site. 
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3. Distn’buted-server systems consist of multiple servers 

In a single-server system, client interactions travel via the 
server. However, in multi- and distributed-server systems, 
client interactions must be sent via more than one server 
if the clients are connected to different servers. This ad- 
ditional communication is said to be interserver, and it 
adds latency to the interactions. Latency is the time de- 
lay involved in the transmission of a packet, and so lower 
latencies are desirable. Since the network links between 
distributed-servers are usually Intemet links, they are gen- 
erally of higher latency than in multi-server systems which 
may employ expensive high-speed hardware to reduce the 
interserver latency. 

Of particular importance is the issue of scalability, which 
is how well the system performs as the number of clients in- 
creases. Single-server systems are limited in scalability by 
the amount of hardware a single machine can have, whereas 
multi- and distributed-server systems are limited by the in- 
terserver network. In addition, servers may be added to 
multi- and distributed-server systems without disrupting the 
virtual world, which further aids the scalability. 

In general, each user in a virtual world will not want to 
interact or communicate with eveIy other user, particularly 
in large virtual worlds. Rather, users tend to communicate 
with only a small group of other users at a time. Arranging 
the system such that most of the clients in a group are on 
the same server results in less interserver communications, 
which improves the performance and scalability of the sys- 
tem. 

Various approaches to lowering the total amount of com- 
munication have been attempted. The SimNet system 
[l] works by broadcasting packets and allowing clients to 
receive only those packets they consider relevant. The 
NF’SNET system [2] uses Areas of Interest to partition the 
clients into disjoint subsets, and then uses multicast groups 
to allow the clients in these subsets to communicate. Most 
client-server based systems developed to date are limited 
in the methods they implement or in their problem do- 
main. For example, RING [3] uses visibility algorithms to 
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compute potential visual interactions between clients, and 
VENUS [4] deals with issues encountered when using satel- 
lites for part of the communication between the clients and 
servers. Some systems aim to be more general, most no- 
tably the WAVES system [5] and its initial implementation, 
HIDRA [6], and the VOID shell [7], which provides an 
object-oriented toolkit for developing client-server virtual 
world systems. By contrast, the system presented in this pa- 
per provides the framework not for an actual virtual world 
system, but rather for a simulation of one. Furthermore, the 
emphasis is on using the simulation to experimentally eval- 
uate the performance of the simulated system. 

In this paper, the neighbourhood of a client is the subset 
of all other clients with which the client may interact. Per- 
formance gains can be achieved when the neighbourhood 
is a strict subset, particularly when the neighbourhood is of 
constant size. 

In multi- and distributed-server systems, each client is 
assigned to a server which handles communication with the 
client. The collection of assignments for all clients is called 
an allocation. Allocations are static if client assignments 
are fixed when clients enter the virtual world, and are dy- 
namic if client assignments may change over time. An allo- 
cation strategy is an algorithm for creating allocations; that 
is, determining each client’s assignment. 

This paper concentrates on these characteristic alloca- 
tion problems found in multi- and distributed-server virtual 
world systems. In particular, 

0 allocation strategy performance - methods for evalu- 
ating the performance of allocation strategies and for 
comparing allocation strategies are not obvious, and 

0 developing allocation strategies -developing good al- 
gorithms for allocation strategies is generally a diffi- 
cult task. 

A flexible object-oriented framework for approaching these 
problems experimentally is presented. It allows a wide 
range of systems to be modelled and simulated without re- 
quiring large amounts of development effort. Input to the 
simulation may be artificially generated or may be actual 
data recorded from a real virtual world system. 

Section 2 describes the main design of the framework. 
Section 3 describes the application of the framework to a 
real virtual world system as an example of its usage, and 
Section 4 presents and discusses the results obtained with 
this sample application. Finally, Section 5 discusses some 
possible improvements. 

2. Framework 

The framework is composed of several main classes, 
each with an associated class hierarchy. They are Entities, 

Events, Logfiles, Costs, Communication Strategies and Al- 
location Strategies. The extensive use of object-oriented 
techniques, in particular the design patterns found in [SI, 
mean that all of these class hierarchies are easily extended. 
This gives the framework the flexibility it needs to be ap- 
plied to many different types of virtual world systems. 

2.1. Entities 

Instances of entities exist in the simulation, and corre- 
spond directly to actual things in the virtual world system. 
There are three types of entities: clients, servers and net- 
work packets. 

A client entity represents a client connected to the main 
network of the virtual world system, which allows a user 
to participate in the virtual world. Clients are assigned to a 
particular server called their assigned server, and all of the 
client’s communication is with this server alone. A client’s 
assigned server is dynamic, which means that it may change 
throughout the simulation in order to best accommodate the 
changing state of the client. 

Clients maintain their state in an object of the class 
Clientstate. This uses the Memento design pattern [SI to 
store and transmit mutable information about the client, 
such as its location in the virtual world or perhaps the clients 
with which it is directly interacting. 

A server entity represents a server in the network which 
gives clients access to the virtual world. The clients as- 
signed to a server are called its assigned clients. Each server 
has a recommended number of clients, called its capacity. 
A server with more assigned clients than its capacity allows 
is said to be overfull, and the clients causing this situation 
are called overfull clients. Each overfull client contributes a 
scalar cost to the current cost, where costs are described in 
Section 2.4. 

A packet entity represents a packet in the network. They 
are used to transfer atomic messages between servers and 
clients. While clients may only send packets to their as- 
signed server, servers may send packets to any of their as- 
signed clients or to any other server. If a server wishes to 
send a packet to a client not assigned to it, the packet must 
first travel to the client’s assigned server. 

Packets record only their source entity, not their desti- 
nation (although they are still received). The destination is 
implied by the allocation, making packets independent of 
allocation. This is important as it allows several allocation 
strategies to be compared on a single scenario. 

There are two specific types of packets, Updatestate 
packets and Assign packets. Updatestate packets carry no- 
tification of a given client’s change of state. They store an 
instance of the client’s new Clientstate object. Incremen- 
tal storage could be achieved by using the Composite de- 
sign pattern [SI to recursively store the differences in state 
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with respect to some other Clientstate object. This other 
Clientstate object could be explicit or implicit, such as the 
client’s last known state. 

Assign packets carry notification of a client’s assignment 
to a particular server. They are sent from the server which 
has determined the assignment (usually the server to which 
the client is being assigned). Exactly where the packets 
are sent depends upon the method used to inform servers 
of client assignment changes. This is handled by selecting 
an assignment cost which reflects the method being used; 
these costs are described in Section 2.4. 

2.2. Events 

The simulation is based on instantaneous events, that is, 
events which occur at a particular time with no duration. 
(Non-instantaneous events can be modelled by having in- 
stantaneous events when they start and finish.) These events 
are stored in a priority queue based on increasing event 
time, and are taken in turn from the head of the queue and 
executed. The execution of an event can add more events to 
the priority queue. 

The available event types are the creation and destruction 
of an entity, the sending and receiving of a packet entity, and 
setting the value of a cost. 

2.3. Logfdes 

Logfiles are simply collections of events stored in plain 
text files. They are used in both input and output modes; 
input for reading a set of events to be used in the simu- 
lation, output for recording (logging) the events which are 
executed by the simulation. 

Logfiles have one event per line, with fields of the events 
separated by whitespace. The fields include the time of the 
event, the identifier of the entity being acted upon, the type 
of event. This file format means that logfiles are simple and 
easily parsed by both machine and human; it allows them 
to be scrutinized by hand when necessary, and also allows 
the application of common text-manipulation utilities to the 
logfiles. 

There are three different types of logfiles, characterised 
by the types of events they may store and their intended 
purpose in the simulation. 

Client state logfiles. Client state logfiles record the state 
of the clients as the virtual world progresses. A client state 
logfile is a complete record of the states of the clients. A 
client state logfile can be “played back” (by executing its 
events) to reconstruct an exact replay of the virtual world 
from which it was recorded. It records the actions of clients 
(particularly their movements), without any concem for is- 
sues peripheral to this, such as the network or strategies 

which happen to be in use. This means that it is essentially 
a record of the data sent from the clients to the servers. 

The specific events allowed are the creation of client and 
UpdateState packet entities, the destruction of entities, and 
the sending and receiving of packets. 

Architecture logfiles. Architecture logfiles record the ar- 
chitecture used to host a virtual world system. This architec- 
ture is the server-side “hardware” setup on which the events 
of client state logfiles may be executed. It includes the 
servers, their network connections, their associated costs, 
limits and other properties particular to the setup. 

It is usual to have an initial “setup” phase of the simula- 
tion in which only architecture events are executed How- 
ever, in keeping with the discrete event simulation design, 
the architecture may be changed at any point in the sim- 
ulation. This is useful for testing situations such as how 
the system performs when a server is destroyed at a certain 
point in time. 

The specific events allowed are the creation of server en- 
tities, the destruction of entities, and setting the values of 
costs. 

Allocation logfiles. Allocation logfiles record the assign- 
ments of clients to servers. It is the output of an allocation 
strategy, and thus can be used instead of an allocation strat- 
egy. In this way, allocation logfiles hide the actual alloca- 
tion strategy used, recording only the decisions made by the 
strategy. This allows allocation strategies to be compared 
without disclosing their methods. 

The specific events allowed are the creation of Assign 
packet entities, the destruction of entities, and the sending 
and receiving of packets. 

Downsampling. The event and logfile design has the dis- 
advantage that logfiles can become very large and slow to 
process if they have a high resolution. This is avoided by 
downsampling the logfile, that is, not recording every event 
to the logfile. For a given packet, the number of missing 
equivalent packets is recorded. This is the number of func- 
tionally equivalent packets omitted from the logfile due to 
downsampling. 

Client estimation is the process of modelling the client’s 
state when downsampling means that a definitive state is not 
available. This is usually accomplished by the interpolation 
or extrapolation of known data, and may be as simple as a 
linear model. The Strategy design pattem [SI is used with 
the ClientEstimator class to define an interface for obtain- 
ing estimates of client states. A Clientstate object stores 
an instance of a ClientEstimator object, which decouples 
the estimation model from the state itself. This allows for 
seamless estimation of data lost to downsampling. 
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2.4. Costs 

In the course of running the simulation, actions incur 
penalties. These penalties are called costs, and are made 
up of two components, Timecosts and DataCosts. Time- 
Costs indicate that an action has taken some period of sim- 
ulated time, or (equivalently) has been delayed by some pe- 
riod of simulated time. DataCosts indicate that an action 
has caused some amount of network W c .  As the simu- 
lation runs it maintains a “current” cost and a “total” cost. 
The current cost is a measure of the cost present in the sys- 
tem at the current point in the simulation, and the total cost 
is the integral of the current cost with respect to simulation 
time. 

Different kinds of costs depend upon different factors. 
Different instances of costs will depend on these factors 
in differing quantities. For example, the cost of sending 
a packet may depend linearly upon the size of the packet, 
whereas the cost of a client joining the network may be a 
constant. In order to accommodate these situations, costs 
are specified as an array of coefficients. The number of CO- 

efficients and the values they are in terms of are specific to 
each kind of cost. The actual value of an instance of a cost 
is found by “flattening” the cost, that is, multiplying each of 
the cost’s coefficients by the value it is in terms of, and then 
summing these. 

Using the Template Method design pattern [SI, the Cost 
class implements costs generally while allowing subclasses 
to specify the number of coefficients and what they are in 
terms of. There are presently 3 types of costs, the Scalar- 
Cost, UpdateStateCost, and Assigncost. 

The ScalarCost has only one coefficient; it is the special 
case of a constant cost which doesn’t depend upon anything. 

The UpdateStateCost is incurred when a client notifies 
its server that its state has changed. It is specified in terms 
of the number of neighbours, the number of neighbours as- 
signed to other servers, and the number of distinct servers 
the neighbours are assigned to. 

The Assigncost is incurred when a client is assigned to 
a server. For a client c being deassigned from server s d  

and assigned to server sa, the Assigncost is specified in 
terms of the number of clients assigned to s a  (excluding c), 
the number of clients assigned to sd (excluding c), the total 
number of clients, and the total number of servers. 

2.5. Allocation strategies 

The Strategy design pattern [SI is used for implement- 
ing allocation strategies. The AllocationStrategy class ab- 
stractly defines the interface of an allocation strategy and 
is subclassed for the actual implementations of the various 
allocation strategies. 

Allocation strategies are notified of the execution of 

Figure 1. An example of a communication 
graph. Each circle of nodes and the edges in- 
cident to those nodes are drawn in the same 
colour. 

events by being passed the executed event. The base Allo- 
cationstrategy class provides an internal interface which de- 
termines the event type, and then passes the appropriate in- 
formation from the event to an event-specific method. This 
means that concrete implementations of allocation strate- 
gies need only override the methods for the event types they 
are interested in. 

Allocation strategies make assignments based on the in- 
formation they receive in notifications. When a strategy is 
notified of a change, it retums the (possibly empty) set of 
chosen assignments. These assignments are stored as allo- 
cation logfile events, as described in Section 2.3. They are 
added to the currently running simulation (usually sched- 
uled for immediate execution) and may also be stored in an 
allocation logfile on disk. 

2.6. Communication strategies 

Communication strategies are methods for determining 
the neighbourhoods of all clients. They are similar to allo- 
cation strategies; they use the Strategy design pattern [SI to 
abstractly define the communication strategy interface, and 
they are notified of the execution of events. However, the 
notification method returns no value. Rather, the communi- 
cation strategy can be queried about the neighbourhood of 
any given client. Neighbourhoods are represented simply as 
an unordered collection of clients. 
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The simulation displays a communication graph, in 
which the nodes represent clients, and two nodes are linked 
by an edge if the corresponding clients are neighbours. The 
graph is drawn as shown in Figure 1, where each circle of 
nodes are the clients assigned to a particular server, and 
are drawn in the same colour. This allows the user to very 
easily see areas with many interserver edges or intraserver 
edges. This layout scales poorly as the number of clients 
and servers increases, but better layouts are possible. The 
problem of finding good layouts for communication graphs 
is outside the scope of this paper. 

3. Experimental design 

3.1. Virtual world system 

As an example of how the framework may be used, this 
section describes its application to a sample virtual world 
system, a large online multiplayer game presently under de- 
velopment at a leading game studio. 

Development in multiplayer games is currently tending 
towards increasing from only tens of simultaneous players 
up to tens of thousands. This means that they are an emerg- 
ing source of real-time virtual world systems for large num- 
bers of clients. 

The game is spatial in nature, with players represented 
by avatar characters in an immersive first-person perspec- 
tive 3D environment. The simulation displays the locations 
of players on a 2D map, called the arena, illustrated later in 
Figure 3 in Section 3.6. 

3.2. Network topology 

The network topology is two-tiered, with a group of 
servers on a high-speed Local Area Network (LAN), and 
clients connecting to these servers via the Internet, illus- 
trated in Figure 2. Note that for client 2 to interact with 
client 6, packets must travel via servers C and D. 

This is a particularly natural and simple topology, 
Funkhouser [9] gives a more detailed investigation of vari- 
ous network topologies for virtual world systems, including 
experimental results. 

3.3. Input data 

Recorded logfiles of actual gameplay were not available 
at the time of publishing. The technical aspects of creating 
such logfiles is a separate problem which lies outside the 
scope of this paper. As a result, the input data was gener- 
ated with a small and simple simulation of player behaviour, 
called bots. 

r__.__.___.______.._ 

client 1 

SWR A 

CLimt 2 

client 3 

sewn c client 4 

Figure 2. The network topology used by the 
simulation. Clients 1-7 are directly con- 
nected to Servers A-E. 

A set of stations are defined at various locations in the 
arena, and these stations are joined by directed edges. Ini- 
tially, the bots are distributed uniformly throughout the 
arena, and each bot travels in a straight line to its nearest . _-- . .  
station. When a bot reaches a statlon, it r e m s  at that 
station for a random period of time between that station’s 
minimum and maximum wait times. While at a station, the 
bot wanders randomly, staying within the station’s “wan- 
der distance”. When a bot has finished waiting, it randomly 
chooses an adjacent station and travels to that station, where 
the process repeats. 

3.4. Client state logfiles 

Three station sets were used, with varying station and 
edge densities. Illustrations of the station sets give only lim- 
ited insights for their relatively large size, so to save space 
they are instead described qualitatively. 

The c i t y  station set consisted of 9 stations in 3 groups, 
each in a comer of the arena. There were several edges 
within each group, an edge between the first and second 
groups, and an edge between the second and third groups. 

The w e l l s l o  station set consisted of 10 stations in 4 
groups distributed across the arena. There were several 
edges within each group and two edges between each group 
and two of its neighbouring groups. 

The w e 1  1 s 5 0 station set consisted of 50 stations dis- 
tributed evenly throughout the arena, with the edges cre- 
ating a triangulation of the stations. This gives a constant 
degree for each station on average. Figure 3 was created 
using w e l l s 5 0 .  
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For each station set, a client state logfile was generated 
with 100,200,500,1000 and 2000 bots, giving a total of 15 
client state logfiles. Each had a duration of 150 seconds and 
was downsampled to a resolution of 10 seconds. 

3.5. Architecture logfiles 

The server load is defined as the average number of 
clients per server. Each server was given a capacity of 32, 
and the server load was given the values of 16,24,32 and 
36. This tests the cases of when the servers are expected 
to be half-full, three-quarters full, completely full, and an 
eighth overfull. Twenty architecture logfiles were gener- 
ated, one for each combination of 100,200,500,1000 and 
2000 clients with server loads of 16,24,32 and 36. 

The UpdateStateCost depended equally on the number of 
neighbours and the number of neighbours on other servers, 
which models the UpdateStatePackets being sent to the 
neighbours via their assigned servers. The Assigncost de- 
pended equally on the number of clients in the assigned and 
deassigned servers, which models the clients being notified 
of the change in assignment. The OverfullServerCost was a 
substantially large constant per overfull client. 

3.6. Allocation strategies used 

Two allocation strategies were compared. The first is a 
simple random allocation strategy, which statically assigns 
clients to a random server, giving quite bad allocations. The 
second is an allocation strategy called cellular, which gives 
better allocations. 

The cellular allocation algorithm is based on the IC- 
Means clustering heuristic [lo]. For each server, a repre- 
sentative point is maintained which is the mean of the loca- 
tions of the server’s assigned clients. Each client is assigned 
to the server whose representative point it is nearest. This 
divides the arena into ‘cells’, shown in Figure 3, where each 
server controls the clients in the cell containing its represen- 
tative. Assignment events occur when clients change cells. 
Initially, clients are randomly assigned to empty servers un- 
til every server has at least one client. 

3.7. Communication strategies used 

Two communication strategies are implemented and 
used. 

The circle communication strategy chooses the neigh- 
bourhood to be the clients which lie within a circle of radius 
T centered on the location of the client. The value of T is a 
parameter of the strategy, and was chosen to be 0.1, 0.15 
and 0.2 times the width of the station set. (Each station set 
had an aspect ratio of approximately 1 .) 

Figure 3. An example of how the cellular 
allocation strategy divides the arena into 
cells, with each server managing a single 
cell. Clients are represented as small crosses 
(‘x’), representative points small open circles 
(Lo’), and clients are joined with an edge where 
they are neighbours. 

The u-nearest communication strategy chooses the 
neighbourhood to be the U nearest neighbours [ l  l]-of the 
client. The value of U is a parameter of the strategy, and 
was chosen to be 5 and 10. 

3.8. Simulation execution 

For each pair of client state and architecture logfiles, the 
simulation was run for all combinations of the allocation 
and communication strategies described in Sections 3.6 and 
3.7. 

The experiment had 5 independent variables - station 
set, number of clients, server load, allocation strategy and 
communication strategy. The number of scenarios is 

3 stations x 5 numbers of clients x 4 server loads x 
2 allocation strategies x 5 communication strategies 
= 600 scenarios. 

The simulation was run on each of these scenarios, and 
the resulting allocation logfile recorded. In addition, the 
following 5 dependent variables are recorded at each point 
in time during the simulation - the current cost, total cost, 
number of interserver links, number of intraserver links, and 
the number of overfull clients. 
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4. Results and discussion 

The 5 independent and 5 dependent variables give the 
results a total of 10 dimensions. This high dimensionality 
means that analysing the results directly is both prohibitive 
and outside the scope of this paper. Instead, smaller sections 
of lower dimensionality have been analysed A sample of 
the most interesting results is presented, illustrating some of 
the insights possible with the framework. 

4.1. Total costs 

Since the cost system has been designed to combine 
many factors, one of the best results to consider is how the 
total cost progresses throughout the simulation. 

Consider the scenarios using the city stations, 500 
clients, circle communication strategy with radius of 0.1 
times the dimensions, server load of threequarters full (24) 
and both the cellular and random allocation strategies. Fig- 
ure 4(a) shows the progression of the total cost throughout 
the simulation. It can be clearly seen that the costs of both 
allocation strategies are accelerating during the simulation, 
but the cellular strategy is doing so at a slower rate than the 
random one. This is as expected, since the random allo- 
cation strategy employs no method of avoiding interserver 
comunications. 

Figure 4(b) shows the same scenario except using 
w e 1  1 s 5 0 stations rather than city. Again, the cellular 
strategy is better than the random strategy, suggesting that 
this may be the case consistently. In addition, after approx- 
imately one minute of simulation, the acceleration of the 
costs of both strategies begins to slow and becomes linear. 
This may be attributed to the fact that clients in w e 1  1 s 5 0 
tend to be more evenly distributed than in city, since 
we1 1 s5 0 has a more even distribution of stations. 

Finally, Figure 4(c) shows the data from Figures 4(a) and 
4(b) on a single set of axes. This clearly shows that the 
cost for both allocation strategies (and their difference) is 
much less in the we 1 1 s 5 0 scenario compared to the c it y 
scenario. As before, this can be attributed to a more even 
distribution of clients in w e 1  1 s 5 0 compared to city. 

4.2. Overfull clients 

One consideration which is not present in the cellular al- 
location strategy is the capacity of servers. The result is that 
the cellular strategy might allow a smal l  number of servers 
to dominate, allocating many clients to those servers and 
making them badly overfull. 

h 1 2  

7 ~ 1 2  
stations,' cellular hlocation'strategy '- 

city stations, random allocation strategy .----*---. ,, 

0 20 40 €4 80 100 120 140 
Simulation time (secs) 

(a) city stations 

1-99 

W~MSSO stations: cellular ilocation'strategy '- 
. _ I *  

1 ' wells50 stBtions, random allocation strategy .. 
7 ~ 1 1  t 
-11 

2-1 1 

1-11 

n 

. . 

-0 20 40 60 80 100 120 140 
Simulation time (secs) 

(b) wells50 stations 

5 4e+12 

-12 *12 i 8 
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Simulation time (sea) 
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Figure 4. Total cost versus simulation time for 
the cellular and random allocation strategies. 
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(a) front view (b) back view 

Figure 5. The percentage of overfull clients versus simulation time, versus server load, for 100 clients 
using the city stations. 

16 

(a) front view (b) back view 

Figure 6. The percentage of overfull clients versus simulation time, versus server load, using the city 
stations. The darkest shade is 100 clients, the next darkest is 500 clients and the lightest shade is 
2000 clients. 

(a) front view (b) back view 

Figure 7. The percentage of overfull clients versus simulation time, versus server load, using the 
wells50 stations. The darkest shade is 100 clients, the next darkest is 500 clients and the lightest 
shade is 2000 clients. 
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Consider the case of the cellular allocation strategy, 
city stations, 100 clients and circle communication strat- 
egy with radius of 0.1 times the dimensions. Figure 5 shows 

simulation progresses and for the various server loads. It 

previously assigned, or unrelated conditions such as the to- 
tal number of clients. 

how the fraction of clients Which are overfull changes as the 5.2. Better allocation strategies 

shows that this fraction of overfull clients slowly increases 
as the simulation progresses and as the servers become in- 
creasingly loaded. 

Figure 6 adds the scenarios for 500 and 2000 clients to 
the plot shown in Figure 5, and shows results which are sur- 
prisingly pronounced. It can be seen quite clearly that as 
the number of clients increases, the fraction of these clients 
which are overfull increases quite rapidly as the simulation 
progresses. In fact, at the end of the simulation approxi- 
mately 70% of the 2000 clients are overfull. This strongly 
suggests that where server capacities are concerned, the cel- 
lular allocation strategy performs poorly as the number of 
clients increases. 

Figure 7 is similar to Figure 6 except that it uses the 
we1 1 s 5 0 stations. Now as the number of clients increases 
so does the fraction of overfull clients, but not to the degree 
found with city stations. This time approximately 40% 
of the 2000 clients are overfull at the end of the simulation. 
This suggests that perhaps the cellular allocation strategy 
performs somewhat better when the clients are more evenly 
distributed. 

Another observation is that the fraction of overfull 
clients for each of the 100, 500 and 2000 client scenarios 
stops increasing and remains constant after a short initial pe- 
riod. This is similar to the observation made in Section 4. l 
where the total cost associated with wells50 stopped ac- 
celerating and continued linearly. It can also be attributed to 
the even distribution of clients, when it is unlikely that the 
number and size of large servers can continue to grow. 

5. Future work 

5.1. Combining allocation strategies 

One of the strengths of the Strategy design pattern [8] is 
that it allows its components to be easily combined. An al- 
location strategy called Multi could be written which main- 
tains a set of other “sub”-allocation strategies. Whenever 
Multi is notified of an event it in turn notifies the sub- 
allocation strategies, receiving a set of assignments from 
each. It then chooses which set of assignments to retum. 

This decision step could also make use of the Strategy 
design pattern [8], allowing the exact method used to be 
determined by an “AssignmentComparator” object. For ex- 
ample, these comparators may choose a set of assignments 
by examining their immediate cost, some longer term pro- 
jected cost estimate, how recently the clients involved were 

An obvious and easy improvement which could be made 
to the cellular allocation strategy is to only allow a client 
to join a server if it does not cause that server to become 
overfull. It would be interesting to see how this would affect 
the performance of the system. 

More sophisticated allocation strategies would also be 
useful. For example, [lo] describes a clustering method 
which is substantially better than that used by the cellular 
allocation strategy, and so this could be used as a basis for 
a better grouping of clients onto servers. 

5.3. Hybrid communication strategies 

Both the circle and u-nearest communication strategies 
have advantages and disadvantages. The circle method has 
the disadvantage that the number of neighbours depends 
on the density of the clients, while it has the advantage 
of a constant maximum neighbour distance. The u-nearest 
method has the disadvantage of the maximum neighbour 
distance depending on the density of the clients, while it 
has the advantage of a constant number of neighbours. 

Based on this, a hybrid communication strategy combin- 
ing the best aspects of both may be useful. For example, the 
strategy may take only the first U neighbours (or less) which 
are within a given radius T.  This would have the advantage 
of both a constant number of clients and a constant maxi- 
mum neighbour distance, and so it would be interesting to 
see how well it performs. 

5.4. Interactivity 

The simulation displays the arena and communication 
graphs graphically. The usefulness of the simulation in ex- 
ploratory situations could be greatly improved by adding 
graphical statistics displays and interactivity features. This 
would allow the user to modify the simulation as it is run- 
ning, and to dynamically see the effects of various opera- 
tions. The possible operations could be as diverse as adding 
or removing a server, changing allocation strategies, or forc- 
ing a set of clients to behave in a particular way. 
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