
Evaluation of Virtual World Systems

Kevin Pulo, Michael E. Houle
Basser Department of Computer Science

The University of Sydney, NSW, Australia, 2006
{kev,meh}@cs.usyd.edu.au

Abstract

A virtual world system is an artificial environment, cre-
ated inside a computer, which mimics some aspect of the
real world. These systems are multiuser, allowing many
people to be present and to interact simultaneously in the
virtual world. The performance of virtual world systems is
important because the quality of the user’s experience de-
pends on the responsiveness of the system. This paper looks
at issues involved in evaluating the performance of such
multiuser virtual world systems. A Jexible, object-oriented
framework is presented for supporting these evaluations ex-
perimentally. As an example of its usage, this framework
is applied to real virtual world system and some results are
presented and discussed.

1. Introduction

Virtual world systems are characterised by client-server
network systems aimed at allowing multiple clients to in-
teract with each other and a virtual ‘environment’. Virtual
world systems span many different areas, from multiplayer
games, Intemet chat rooms and cellular mobile phone sys-
tems, to collaborative computing, video conferencing and
tele-presence systems, to emerging e-commerce applica-
tions such as real-time auctions and real-time stock day
trading.

Virtual world systems aim to be as realistic as possible.
One of the most important aspects of this is the responsive-
ness of the system. This paper focuses on evaluating the
performance of the system as a whole, but in particular the
network and how it affects the responsiveness of the system.

In terms of server setup, there are three types of virtual
world systems.

1. Single-server systems consist of one server to which
all the clients are connected.

2. Multi-server systems consist of multiple servers col-
lected at a single Intemet site.

0-7695-1254-2/01 $10.00 0 2001 IEEE

3. Distn’buted-server systems consist of multiple servers

In a single-server system, client interactions travel via the
server. However, in multi- and distributed-server systems,
client interactions must be sent via more than one server
if the clients are connected to different servers. This ad-
ditional communication is said to be interserver, and it
adds latency to the interactions. Latency is the time de-
lay involved in the transmission of a packet, and so lower
latencies are desirable. Since the network links between
distributed-servers are usually Intemet links, they are gen-
erally of higher latency than in multi-server systems which
may employ expensive high-speed hardware to reduce the
interserver latency.

Of particular importance is the issue of scalability, which
is how well the system performs as the number of clients in-
creases. Single-server systems are limited in scalability by
the amount of hardware a single machine can have, whereas
multi- and distributed-server systems are limited by the in-
terserver network. In addition, servers may be added to
multi- and distributed-server systems without disrupting the
virtual world, which further aids the scalability.

In general, each user in a virtual world will not want to
interact or communicate with eveIy other user, particularly
in large virtual worlds. Rather, users tend to communicate
with only a small group of other users at a time. Arranging
the system such that most of the clients in a group are on
the same server results in less interserver communications,
which improves the performance and scalability of the sys-
tem.

Various approaches to lowering the total amount of com-
munication have been attempted. The SimNet system
[l] works by broadcasting packets and allowing clients to
receive only those packets they consider relevant. The
NF’SNET system [2] uses Areas of Interest to partition the
clients into disjoint subsets, and then uses multicast groups
to allow the clients in these subsets to communicate. Most
client-server based systems developed to date are limited
in the methods they implement or in their problem do-
main. For example, RING [3] uses visibility algorithms to

distributed across the Intemet.

98

compute potential visual interactions between clients, and
VENUS [4] deals with issues encountered when using satel-
lites for part of the communication between the clients and
servers. Some systems aim to be more general, most no-
tably the WAVES system [5] and its initial implementation,
HIDRA [6], and the VOID shell [7], which provides an
object-oriented toolkit for developing client-server virtual
world systems. By contrast, the system presented in this pa-
per provides the framework not for an actual virtual world
system, but rather for a simulation of one. Furthermore, the
emphasis is on using the simulation to experimentally eval-
uate the performance of the simulated system.

In this paper, the neighbourhood of a client is the subset
of all other clients with which the client may interact. Per-
formance gains can be achieved when the neighbourhood
is a strict subset, particularly when the neighbourhood is of
constant size.

In multi- and distributed-server systems, each client is
assigned to a server which handles communication with the
client. The collection of assignments for all clients is called
an allocation. Allocations are static if client assignments
are fixed when clients enter the virtual world, and are dy-
namic if client assignments may change over time. An allo-
cation strategy is an algorithm for creating allocations; that
is, determining each client’s assignment.

This paper concentrates on these characteristic alloca-
tion problems found in multi- and distributed-server virtual
world systems. In particular,

0 allocation strategy performance - methods for evalu-
ating the performance of allocation strategies and for
comparing allocation strategies are not obvious, and

0 developing allocation strategies -developing good al-
gorithms for allocation strategies is generally a diffi-
cult task.

A flexible object-oriented framework for approaching these
problems experimentally is presented. It allows a wide
range of systems to be modelled and simulated without re-
quiring large amounts of development effort. Input to the
simulation may be artificially generated or may be actual
data recorded from a real virtual world system.

Section 2 describes the main design of the framework.
Section 3 describes the application of the framework to a
real virtual world system as an example of its usage, and
Section 4 presents and discusses the results obtained with
this sample application. Finally, Section 5 discusses some
possible improvements.

2. Framework

The framework is composed of several main classes,
each with an associated class hierarchy. They are Entities,

Events, Logfiles, Costs, Communication Strategies and Al-
location Strategies. The extensive use of object-oriented
techniques, in particular the design patterns found in [SI,
mean that all of these class hierarchies are easily extended.
This gives the framework the flexibility it needs to be ap-
plied to many different types of virtual world systems.

2.1. Entities

Instances of entities exist in the simulation, and corre-
spond directly to actual things in the virtual world system.
There are three types of entities: clients, servers and net-
work packets.

A client entity represents a client connected to the main
network of the virtual world system, which allows a user
to participate in the virtual world. Clients are assigned to a
particular server called their assigned server, and all of the
client’s communication is with this server alone. A client’s
assigned server is dynamic, which means that it may change
throughout the simulation in order to best accommodate the
changing state of the client.

Clients maintain their state in an object of the class
Clientstate. This uses the Memento design pattern [SI to
store and transmit mutable information about the client,
such as its location in the virtual world or perhaps the clients
with which it is directly interacting.

A server entity represents a server in the network which
gives clients access to the virtual world. The clients as-
signed to a server are called its assigned clients. Each server
has a recommended number of clients, called its capacity.
A server with more assigned clients than its capacity allows
is said to be overfull, and the clients causing this situation
are called overfull clients. Each overfull client contributes a
scalar cost to the current cost, where costs are described in
Section 2.4.

A packet entity represents a packet in the network. They
are used to transfer atomic messages between servers and
clients. While clients may only send packets to their as-
signed server, servers may send packets to any of their as-
signed clients or to any other server. If a server wishes to
send a packet to a client not assigned to it, the packet must
first travel to the client’s assigned server.

Packets record only their source entity, not their desti-
nation (although they are still received). The destination is
implied by the allocation, making packets independent of
allocation. This is important as it allows several allocation
strategies to be compared on a single scenario.

There are two specific types of packets, Updatestate
packets and Assign packets. Updatestate packets carry no-
tification of a given client’s change of state. They store an
instance of the client’s new Clientstate object. Incremen-
tal storage could be achieved by using the Composite de-
sign pattern [SI to recursively store the differences in state

4

99

with respect to some other Clientstate object. This other
Clientstate object could be explicit or implicit, such as the
client’s last known state.

Assign packets carry notification of a client’s assignment
to a particular server. They are sent from the server which
has determined the assignment (usually the server to which
the client is being assigned). Exactly where the packets
are sent depends upon the method used to inform servers
of client assignment changes. This is handled by selecting
an assignment cost which reflects the method being used;
these costs are described in Section 2.4.

2.2. Events

The simulation is based on instantaneous events, that is,
events which occur at a particular time with no duration.
(Non-instantaneous events can be modelled by having in-
stantaneous events when they start and finish.) These events
are stored in a priority queue based on increasing event
time, and are taken in turn from the head of the queue and
executed. The execution of an event can add more events to
the priority queue.

The available event types are the creation and destruction
of an entity, the sending and receiving of a packet entity, and
setting the value of a cost.

2.3. Logfdes

Logfiles are simply collections of events stored in plain
text files. They are used in both input and output modes;
input for reading a set of events to be used in the simu-
lation, output for recording (logging) the events which are
executed by the simulation.

Logfiles have one event per line, with fields of the events
separated by whitespace. The fields include the time of the
event, the identifier of the entity being acted upon, the type
of event. This file format means that logfiles are simple and
easily parsed by both machine and human; it allows them
to be scrutinized by hand when necessary, and also allows
the application of common text-manipulation utilities to the
logfiles.

There are three different types of logfiles, characterised
by the types of events they may store and their intended
purpose in the simulation.

Client state logfiles. Client state logfiles record the state
of the clients as the virtual world progresses. A client state
logfile is a complete record of the states of the clients. A
client state logfile can be “played back” (by executing its
events) to reconstruct an exact replay of the virtual world
from which it was recorded. It records the actions of clients
(particularly their movements), without any concem for is-
sues peripheral to this, such as the network or strategies

which happen to be in use. This means that it is essentially
a record of the data sent from the clients to the servers.

The specific events allowed are the creation of client and
UpdateState packet entities, the destruction of entities, and
the sending and receiving of packets.

Architecture logfiles. Architecture logfiles record the ar-
chitecture used to host a virtual world system. This architec-
ture is the server-side “hardware” setup on which the events
of client state logfiles may be executed. It includes the
servers, their network connections, their associated costs,
limits and other properties particular to the setup.

It is usual to have an initial “setup” phase of the simula-
tion in which only architecture events are executed How-
ever, in keeping with the discrete event simulation design,
the architecture may be changed at any point in the sim-
ulation. This is useful for testing situations such as how
the system performs when a server is destroyed at a certain
point in time.

The specific events allowed are the creation of server en-
tities, the destruction of entities, and setting the values of
costs.

Allocation logfiles. Allocation logfiles record the assign-
ments of clients to servers. It is the output of an allocation
strategy, and thus can be used instead of an allocation strat-
egy. In this way, allocation logfiles hide the actual alloca-
tion strategy used, recording only the decisions made by the
strategy. This allows allocation strategies to be compared
without disclosing their methods.

The specific events allowed are the creation of Assign
packet entities, the destruction of entities, and the sending
and receiving of packets.

Downsampling. The event and logfile design has the dis-
advantage that logfiles can become very large and slow to
process if they have a high resolution. This is avoided by
downsampling the logfile, that is, not recording every event
to the logfile. For a given packet, the number of missing
equivalent packets is recorded. This is the number of func-
tionally equivalent packets omitted from the logfile due to
downsampling.

Client estimation is the process of modelling the client’s
state when downsampling means that a definitive state is not
available. This is usually accomplished by the interpolation
or extrapolation of known data, and may be as simple as a
linear model. The Strategy design pattem [SI is used with
the ClientEstimator class to define an interface for obtain-
ing estimates of client states. A Clientstate object stores
an instance of a ClientEstimator object, which decouples
the estimation model from the state itself. This allows for
seamless estimation of data lost to downsampling.

100

2.4. Costs

In the course of running the simulation, actions incur
penalties. These penalties are called costs, and are made
up of two components, Timecosts and DataCosts. Time-
Costs indicate that an action has taken some period of sim-
ulated time, or (equivalently) has been delayed by some pe-
riod of simulated time. DataCosts indicate that an action
has caused some amount of network W c . As the simu-
lation runs it maintains a “current” cost and a “total” cost.
The current cost is a measure of the cost present in the sys-
tem at the current point in the simulation, and the total cost
is the integral of the current cost with respect to simulation
time.

Different kinds of costs depend upon different factors.
Different instances of costs will depend on these factors
in differing quantities. For example, the cost of sending
a packet may depend linearly upon the size of the packet,
whereas the cost of a client joining the network may be a
constant. In order to accommodate these situations, costs
are specified as an array of coefficients. The number of CO-

efficients and the values they are in terms of are specific to
each kind of cost. The actual value of an instance of a cost
is found by “flattening” the cost, that is, multiplying each of
the cost’s coefficients by the value it is in terms of, and then
summing these.

Using the Template Method design pattern [SI, the Cost
class implements costs generally while allowing subclasses
to specify the number of coefficients and what they are in
terms of. There are presently 3 types of costs, the Scalar-
Cost, UpdateStateCost, and Assigncost.

The ScalarCost has only one coefficient; it is the special
case of a constant cost which doesn’t depend upon anything.

The UpdateStateCost is incurred when a client notifies
its server that its state has changed. It is specified in terms
of the number of neighbours, the number of neighbours as-
signed to other servers, and the number of distinct servers
the neighbours are assigned to.

The Assigncost is incurred when a client is assigned to
a server. For a client c being deassigned from server s d

and assigned to server sa, the Assigncost is specified in
terms of the number of clients assigned to s a (excluding c),
the number of clients assigned to sd (excluding c), the total
number of clients, and the total number of servers.

2.5. Allocation strategies

The Strategy design pattern [SI is used for implement-
ing allocation strategies. The AllocationStrategy class ab-
stractly defines the interface of an allocation strategy and
is subclassed for the actual implementations of the various
allocation strategies.

Allocation strategies are notified of the execution of

Figure 1. An example of a communication
graph. Each circle of nodes and the edges in-
cident to those nodes are drawn in the same
colour.

events by being passed the executed event. The base Allo-
cationstrategy class provides an internal interface which de-
termines the event type, and then passes the appropriate in-
formation from the event to an event-specific method. This
means that concrete implementations of allocation strate-
gies need only override the methods for the event types they
are interested in.

Allocation strategies make assignments based on the in-
formation they receive in notifications. When a strategy is
notified of a change, it retums the (possibly empty) set of
chosen assignments. These assignments are stored as allo-
cation logfile events, as described in Section 2.3. They are
added to the currently running simulation (usually sched-
uled for immediate execution) and may also be stored in an
allocation logfile on disk.

2.6. Communication strategies

Communication strategies are methods for determining
the neighbourhoods of all clients. They are similar to allo-
cation strategies; they use the Strategy design pattern [SI to
abstractly define the communication strategy interface, and
they are notified of the execution of events. However, the
notification method returns no value. Rather, the communi-
cation strategy can be queried about the neighbourhood of
any given client. Neighbourhoods are represented simply as
an unordered collection of clients.

101

The simulation displays a communication graph, in
which the nodes represent clients, and two nodes are linked
by an edge if the corresponding clients are neighbours. The
graph is drawn as shown in Figure 1, where each circle of
nodes are the clients assigned to a particular server, and
are drawn in the same colour. This allows the user to very
easily see areas with many interserver edges or intraserver
edges. This layout scales poorly as the number of clients
and servers increases, but better layouts are possible. The
problem of finding good layouts for communication graphs
is outside the scope of this paper.

3. Experimental design

3.1. Virtual world system

As an example of how the framework may be used, this
section describes its application to a sample virtual world
system, a large online multiplayer game presently under de-
velopment at a leading game studio.

Development in multiplayer games is currently tending
towards increasing from only tens of simultaneous players
up to tens of thousands. This means that they are an emerg-
ing source of real-time virtual world systems for large num-
bers of clients.

The game is spatial in nature, with players represented
by avatar characters in an immersive first-person perspec-
tive 3D environment. The simulation displays the locations
of players on a 2D map, called the arena, illustrated later in
Figure 3 in Section 3.6.

3.2. Network topology

The network topology is two-tiered, with a group of
servers on a high-speed Local Area Network (LAN), and
clients connecting to these servers via the Internet, illus-
trated in Figure 2. Note that for client 2 to interact with
client 6, packets must travel via servers C and D.

This is a particularly natural and simple topology,
Funkhouser [9] gives a more detailed investigation of vari-
ous network topologies for virtual world systems, including
experimental results.

3.3. Input data

Recorded logfiles of actual gameplay were not available
at the time of publishing. The technical aspects of creating
such logfiles is a separate problem which lies outside the
scope of this paper. As a result, the input data was gener-
ated with a small and simple simulation of player behaviour,
called bots.

r__.__.___.______.._

client 1

SWR A

CLimt 2

client 3

sewn c client 4

Figure 2. The network topology used by the
simulation. Clients 1-7 are directly con-
nected to Servers A-E.

A set of stations are defined at various locations in the
arena, and these stations are joined by directed edges. Ini-
tially, the bots are distributed uniformly throughout the
arena, and each bot travels in a straight line to its nearest . _-- . .
station. When a bot reaches a statlon, it r e m s at that
station for a random period of time between that station’s
minimum and maximum wait times. While at a station, the
bot wanders randomly, staying within the station’s “wan-
der distance”. When a bot has finished waiting, it randomly
chooses an adjacent station and travels to that station, where
the process repeats.

3.4. Client state logfiles

Three station sets were used, with varying station and
edge densities. Illustrations of the station sets give only lim-
ited insights for their relatively large size, so to save space
they are instead described qualitatively.

The c i t y station set consisted of 9 stations in 3 groups,
each in a comer of the arena. There were several edges
within each group, an edge between the first and second
groups, and an edge between the second and third groups.

The w e l l s l o station set consisted of 10 stations in 4
groups distributed across the arena. There were several
edges within each group and two edges between each group
and two of its neighbouring groups.

The w e 1 1 s 5 0 station set consisted of 50 stations dis-
tributed evenly throughout the arena, with the edges cre-
ating a triangulation of the stations. This gives a constant
degree for each station on average. Figure 3 was created
using w e l l s 5 0 .

102

For each station set, a client state logfile was generated
with 100,200,500,1000 and 2000 bots, giving a total of 15
client state logfiles. Each had a duration of 150 seconds and
was downsampled to a resolution of 10 seconds.

3.5. Architecture logfiles

The server load is defined as the average number of
clients per server. Each server was given a capacity of 32,
and the server load was given the values of 16,24,32 and
36. This tests the cases of when the servers are expected
to be half-full, three-quarters full, completely full, and an
eighth overfull. Twenty architecture logfiles were gener-
ated, one for each combination of 100,200,500,1000 and
2000 clients with server loads of 16,24,32 and 36.

The UpdateStateCost depended equally on the number of
neighbours and the number of neighbours on other servers,
which models the UpdateStatePackets being sent to the
neighbours via their assigned servers. The Assigncost de-
pended equally on the number of clients in the assigned and
deassigned servers, which models the clients being notified
of the change in assignment. The OverfullServerCost was a
substantially large constant per overfull client.

3.6. Allocation strategies used

Two allocation strategies were compared. The first is a
simple random allocation strategy, which statically assigns
clients to a random server, giving quite bad allocations. The
second is an allocation strategy called cellular, which gives
better allocations.

The cellular allocation algorithm is based on the IC-
Means clustering heuristic [lo]. For each server, a repre-
sentative point is maintained which is the mean of the loca-
tions of the server’s assigned clients. Each client is assigned
to the server whose representative point it is nearest. This
divides the arena into ‘cells’, shown in Figure 3, where each
server controls the clients in the cell containing its represen-
tative. Assignment events occur when clients change cells.
Initially, clients are randomly assigned to empty servers un-
til every server has at least one client.

3.7. Communication strategies used

Two communication strategies are implemented and
used.

The circle communication strategy chooses the neigh-
bourhood to be the clients which lie within a circle of radius
T centered on the location of the client. The value of T is a
parameter of the strategy, and was chosen to be 0.1, 0.15
and 0.2 times the width of the station set. (Each station set
had an aspect ratio of approximately 1 .)

Figure 3. An example of how the cellular
allocation strategy divides the arena into
cells, with each server managing a single
cell. Clients are represented as small crosses
(‘x’), representative points small open circles
(Lo’), and clients are joined with an edge where
they are neighbours.

The u-nearest communication strategy chooses the
neighbourhood to be the U nearest neighbours [l l]-of the
client. The value of U is a parameter of the strategy, and
was chosen to be 5 and 10.

3.8. Simulation execution

For each pair of client state and architecture logfiles, the
simulation was run for all combinations of the allocation
and communication strategies described in Sections 3.6 and
3.7.

The experiment had 5 independent variables - station
set, number of clients, server load, allocation strategy and
communication strategy. The number of scenarios is

3 stations x 5 numbers of clients x 4 server loads x
2 allocation strategies x 5 communication strategies
= 600 scenarios.

The simulation was run on each of these scenarios, and
the resulting allocation logfile recorded. In addition, the
following 5 dependent variables are recorded at each point
in time during the simulation - the current cost, total cost,
number of interserver links, number of intraserver links, and
the number of overfull clients.

103

4. Results and discussion

The 5 independent and 5 dependent variables give the
results a total of 10 dimensions. This high dimensionality
means that analysing the results directly is both prohibitive
and outside the scope of this paper. Instead, smaller sections
of lower dimensionality have been analysed A sample of
the most interesting results is presented, illustrating some of
the insights possible with the framework.

4.1. Total costs

Since the cost system has been designed to combine
many factors, one of the best results to consider is how the
total cost progresses throughout the simulation.

Consider the scenarios using the city stations, 500
clients, circle communication strategy with radius of 0.1
times the dimensions, server load of threequarters full (24)
and both the cellular and random allocation strategies. Fig-
ure 4(a) shows the progression of the total cost throughout
the simulation. It can be clearly seen that the costs of both
allocation strategies are accelerating during the simulation,
but the cellular strategy is doing so at a slower rate than the
random one. This is as expected, since the random allo-
cation strategy employs no method of avoiding interserver
comunications.

Figure 4(b) shows the same scenario except using
w e 1 1 s 5 0 stations rather than city. Again, the cellular
strategy is better than the random strategy, suggesting that
this may be the case consistently. In addition, after approx-
imately one minute of simulation, the acceleration of the
costs of both strategies begins to slow and becomes linear.
This may be attributed to the fact that clients in w e 1 1 s 5 0
tend to be more evenly distributed than in city, since
we1 1 s5 0 has a more even distribution of stations.

Finally, Figure 4(c) shows the data from Figures 4(a) and
4(b) on a single set of axes. This clearly shows that the
cost for both allocation strategies (and their difference) is
much less in the we 1 1 s 5 0 scenario compared to the c it y
scenario. As before, this can be attributed to a more even
distribution of clients in w e 1 1 s 5 0 compared to city.

4.2. Overfull clients

One consideration which is not present in the cellular al-
location strategy is the capacity of servers. The result is that
the cellular strategy might allow a smal l number of servers
to dominate, allocating many clients to those servers and
making them badly overfull.

h 1 2

7 ~ 1 2
stations,' cellular hlocation'strategy '-

city stations, random allocation strategy .----*---. ,,

0 20 40 €4 80 100 120 140
Simulation time (secs)

(a) city stations

1-99

W~MSSO stations: cellular ilocation'strategy '-
. _ I *

1 ' wells50 stBtions, random allocation strategy ..
7 ~ 1 1 t
-11

2-1 1

1-11

n

. .

-0 20 40 60 80 100 120 140
Simulation time (secs)

(b) wells50 stations

5 4e+12

-12 *12 i 8
z

0 20 40 60 80 loo 120 140
Simulation time (sea)

(c) both city and wells50 stations

Figure 4. Total cost versus simulation time for
the cellular and random allocation strategies.

1 04

(a) front view (b) back view

Figure 5. The percentage of overfull clients versus simulation time, versus server load, for 100 clients
using the city stations.

16

(a) front view (b) back view

Figure 6. The percentage of overfull clients versus simulation time, versus server load, using the city
stations. The darkest shade is 100 clients, the next darkest is 500 clients and the lightest shade is
2000 clients.

(a) front view (b) back view

Figure 7. The percentage of overfull clients versus simulation time, versus server load, using the
wells50 stations. The darkest shade is 100 clients, the next darkest is 500 clients and the lightest
shade is 2000 clients.

105

Consider the case of the cellular allocation strategy,
city stations, 100 clients and circle communication strat-
egy with radius of 0.1 times the dimensions. Figure 5 shows

simulation progresses and for the various server loads. It

previously assigned, or unrelated conditions such as the to-
tal number of clients.

how the fraction of clients Which are overfull changes as the 5.2. Better allocation strategies

shows that this fraction of overfull clients slowly increases
as the simulation progresses and as the servers become in-
creasingly loaded.

Figure 6 adds the scenarios for 500 and 2000 clients to
the plot shown in Figure 5, and shows results which are sur-
prisingly pronounced. It can be seen quite clearly that as
the number of clients increases, the fraction of these clients
which are overfull increases quite rapidly as the simulation
progresses. In fact, at the end of the simulation approxi-
mately 70% of the 2000 clients are overfull. This strongly
suggests that where server capacities are concerned, the cel-
lular allocation strategy performs poorly as the number of
clients increases.

Figure 7 is similar to Figure 6 except that it uses the
we1 1 s 5 0 stations. Now as the number of clients increases
so does the fraction of overfull clients, but not to the degree
found with city stations. This time approximately 40%
of the 2000 clients are overfull at the end of the simulation.
This suggests that perhaps the cellular allocation strategy
performs somewhat better when the clients are more evenly
distributed.

Another observation is that the fraction of overfull
clients for each of the 100, 500 and 2000 client scenarios
stops increasing and remains constant after a short initial pe-
riod. This is similar to the observation made in Section 4. l
where the total cost associated with wells50 stopped ac-
celerating and continued linearly. It can also be attributed to
the even distribution of clients, when it is unlikely that the
number and size of large servers can continue to grow.

5. Future work

5.1. Combining allocation strategies

One of the strengths of the Strategy design pattern [8] is
that it allows its components to be easily combined. An al-
location strategy called Multi could be written which main-
tains a set of other “sub”-allocation strategies. Whenever
Multi is notified of an event it in turn notifies the sub-
allocation strategies, receiving a set of assignments from
each. It then chooses which set of assignments to retum.

This decision step could also make use of the Strategy
design pattern [8], allowing the exact method used to be
determined by an “AssignmentComparator” object. For ex-
ample, these comparators may choose a set of assignments
by examining their immediate cost, some longer term pro-
jected cost estimate, how recently the clients involved were

An obvious and easy improvement which could be made
to the cellular allocation strategy is to only allow a client
to join a server if it does not cause that server to become
overfull. It would be interesting to see how this would affect
the performance of the system.

More sophisticated allocation strategies would also be
useful. For example, [lo] describes a clustering method
which is substantially better than that used by the cellular
allocation strategy, and so this could be used as a basis for
a better grouping of clients onto servers.

5.3. Hybrid communication strategies

Both the circle and u-nearest communication strategies
have advantages and disadvantages. The circle method has
the disadvantage that the number of neighbours depends
on the density of the clients, while it has the advantage
of a constant maximum neighbour distance. The u-nearest
method has the disadvantage of the maximum neighbour
distance depending on the density of the clients, while it
has the advantage of a constant number of neighbours.

Based on this, a hybrid communication strategy combin-
ing the best aspects of both may be useful. For example, the
strategy may take only the first U neighbours (or less) which
are within a given radius T. This would have the advantage
of both a constant number of clients and a constant maxi-
mum neighbour distance, and so it would be interesting to
see how well it performs.

5.4. Interactivity

The simulation displays the arena and communication
graphs graphically. The usefulness of the simulation in ex-
ploratory situations could be greatly improved by adding
graphical statistics displays and interactivity features. This
would allow the user to modify the simulation as it is run-
ning, and to dynamically see the effects of various opera-
tions. The possible operations could be as diverse as adding
or removing a server, changing allocation strategies, or forc-
ing a set of clients to behave in a particular way.

6. Acknowledgements

Prof. Peter Eades and Prof. Bernard Pailthorpe provided
invaluable feedback and helpful advice with the writing of
this paper.

106

References

[l] J. Locke, An Introduction to the Intemet Network-
ing Environment and SIMNETDIS, Technical Report,
Computer Science Department, Naval Postgraduate
School, August 1993.

[2] M. Macedonia, M. Zyda, D. Pratt, D. Bmtzman, P.
Barham, Exploiting reality with multicast groups: A
network architecture for large-scale virtual environ-
ments, Proceedings of IEEE Virtual Reality Annual
Intemational Symposium (VRAIS) 1995, pp 2-10.

[3] T. A. Funkhouser, RING: A Client-Server System for
Multi-User Mrtual Environments, Proceedings of the
1995 Symposium on Interactive 3D Graphics, Mon-
terey CA., pp 85-92. ACM SIGGRAPH, March 1995.

[4] S. Udani, VENUS: A Wrtual Environment Network
Using Satellites, Doctoral Dissertation, Department of
Computer Information Science, University of Penn-
sylvania, June 1999.

[SI R. Kazman, Making WAVES: On the Design of Ar-
chitectures for Low-end Distributed virtual Environ-
ments, IEEE Virtual Reality Annual International
Symposium (VRAIS) 1993, pp 443-449.

[6] R. Kazman, HIDRA: An Architecture for Highly Dy-
namic Physically Based Multi-Agent Simulations, In-
ternational Journal in Computer Simulation, pp 149-
164, May 1995.

[7] V. Cahill, A. Condon, S . McGerty, G. Starovic, B.
Tangney, The VOID Shell: A Toolkit for the Develop-
ment of Distributed Mdeo Games and Mrtual Worlds,
hceedings of the First Intemational Workshop on
Simulation and Interaction in Virtual Environments
(SIVE) 1995, pp 172-177.

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Pattems: Elements of Reusable Object-Oriented So@-
ware. (Addison-Wesley, 1995)

[9] T. A. Funkhouser, Network Topologies for Scalable
Multi-User virtual Environments. In Proceedings of
the V i a l Reality Annual International Symposium.
VRAIS’96 (March 1996), IEEE Computer Society,
BEE, pp. 222-228.

[lo] V. Estivill-Castro, M. E. Houle. “Robust Distance-
Based Clustering with Applications to Spatial Data
Mining.” Algorithmica (Special Issue: Algorithms
for Geographical Information). Springer-Verlag, New
York, 2001 (to appear).

[ll] J. O’Rourke, Computational Geometry in C, Sec-
ond Edition. (Cambridge University Press, New York,
1998)

107

