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Advantages
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• Allows many dimensions
• Straightforward mapping
• Human perceptual system is good at seeing

connectedness and patterns
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Common values cause ambiguity
Solution: (a) Curves (b) Spreading
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View affected by axis ordering, sign, scaling, translation
Solution: Interactive manipulation
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• Social science tends to be “undervisualised”

Analytic/statistical techniques

Simple graphs

• Despite large and rich datasets
• Excellent scope for using sophisticated and advanced

visualisation techniques to better exploit the data
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person year employment study relationship
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1 2010 full-time none married
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2 2009 full-time none cohabitating
2 2010 full-time none single
... ... ... ... ...



Longitudinal/panel survey data

Analysis and Visualisation of Large and Complex Data — Kevin Pulo 13 / 32

• Follows the same set of individuals over time
• Eg. employment, study and relationship status over

the past 10 years for a group of people
(“respondents”)

person
year 1 2 · · ·

2008 n,f,s f,p,c · · ·

2009 p,p,c f,n,c · · ·

2010 f,n,m f,n,s · · ·

... ... ... . . .
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• Data contains:

Thousands of respondents, answering

Hundreds of questions, over

Multiple waves

• Direct visualisation
• Support interactive exploration
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1. Initial familiarisation

2. Researchers looking for interesting features
• integration with Australian Data Archive (ADA)

website

3. Archivists performing data cleaning
• via desktop application
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Negotiating the Life Course (NLC)
• Interested in:

“... the changing life courses ... as the family and
society move from male breadwinner orientation in
the direction of higher levels of gender equity.”

• 4 waves, unbalanced
Wave 1 (1997): 2231 respondants
Wave 2 (2000): 1768 respondants
Wave 3 (2003): 1192 respondants
Wave 4 (2006): 1138 respondants + 2000 new

• Noise added to address confidentiality
• http://lifecourse.anu.edu.au/

http://lifecourse.anu.edu.au/


Pilot software tool
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Panimalia

• Based on “parvis” InfoVis research software

• Written in Java
Web (applet) usage
Desktop (application) usage

• Still under development
Interactivity (responsiveness, usability)
Web integration
Data input/output (over web, native files)

• Work progressing on web-enabled version
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2009 eResearch vis challenge
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• Sponsored by Sirca
• NYSE/NASDAQ and Reuters data
• 30 Dow Jones stocks
• From 29 Sept – 3 Oct 2008

When GFC became fully apparent

• Promote meaningful visualisations
• $5000 first prize, $500 second/third
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• 1Gb CSV file, sorted by stock/time
• 19,050,304 records (3 types):

Trades: 3,634,444 records
Quotes: 15,413,586 records
News: 2,274 records

• Each record has:
Stock name, date/time (milliseconds)
Trades: price/volume
Quotes: bid/ask, price/volume
News: headline (free text)

• Quotes visually indistiguishable from trades
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AA.N,29-SEP -2008,18:33:10.103, -4 ,Quote ,,,21.1,21.14,AA.N,29-SEP -2008,18:33:10.103, -4 ,Quote ,,,21.11,21.14,AA.N,29-SEP -2008,18:33:10.533, -4 ,Quote ,,,21.09,21.14,AA.N,29-SEP -2008,18:33:10.556, -4 ,Trade ,21.11,100,,,AA.N,29-SEP -2008,18:33:10.985, -4 ,Quote ,,,21.11,21.14,AA.N,29-SEP -2008,18:33:11.081, -4 ,Trade ,21.11,200,,,AA.N,29-SEP -2008,18:33:11.125, -4 ,Quote ,,,21.09,21.14,AA.N,29-SEP -2008,18:33:11.319, -4 ,News ,,,,,"STOCKS NEWS→
→ US-Wall St routed as House rejets bailout bill"AA.N,29-SEP -2008,18:33:11.585, -4 ,Quote ,,,21.1,21.14,AA.N,29-SEP -2008,18:33:11.995, -4 ,Quote ,,,21.1,21.12,AA.N,29-SEP -2008,18:33:12.037, -4 ,Quote ,,,21.11,21.12,AA.N,29-SEP -2008,18:33:12.094, -4 ,Quote ,,,21.1,21.12,AA.N,29-SEP -2008,18:33:12.155, -4 ,Quote ,,,21.09,21.12,AA.N,29-SEP -2008,18:33:12.199, -4 ,Trade ,21.11,100,,,AA.N,29-SEP -2008,18:33:13.003, -4 ,Quote ,,,21.09,21.11,AA.N,29-SEP -2008,18:33:14.003, -4 ,Trade ,21.1,800,,,AA.N,29-SEP -2008,18:33:14.025, -4 ,Quote ,,,21.09,21.1,AA.N,29-SEP -2008,18:33:14.114, -4 ,Quote ,,,21.09,21.1,
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• [The] Judges felt this entry was terrific ...
• A really simple rendering of complex datasets, it

invites you in to try to change the list of stocks being
displayed, and to try to pause and start the time-slide
to take a better look at the way things are panning out
...

• It provides a great way of replaying a market event ...
[and] also has great “real time” promise in the way a
trader or analyst would monitor a market segment ...

• This is a platform that has potential to move forward
commercially and academically.
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1. Use Parallel Coordinate Plots

2. ...

3. Profit!
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