
Smooth Structural Zooming of h-v Inclusion Tree Layouts

Kevin Pulo, Peter Eades, Masahiro Takatsuka
School of Information Technologies

University of Sydney
NSW, 2006, Australia�

kev,peter,masa � @it.usyd.edu.au

Abstract

We present a new paradigm for achieving Focus + Con-
text visualizations called smooth structural zooming, which
varies the level of detail of the data in different areas of
the visualization, as opposed to geometrically distorting the
visualization or employing rapid zooming techniques. A
smooth structural zooming technique for horizontal-vertical
(h-v) inclusion tree layouts is described and applied to the
domain of the software design process, specifically, Design
Behaviour Trees (DBTs). This system has the ability to nav-
igate and explore data too large to be fully displayed, whilst
maintaining an approximately constant level of visual com-
plexity, good visualization aesthetics and preservation of
the user’s mental map through animation. The technique
may be readily extended to arbitrary layout styles and algo-
rithms, and to other hierarchical data structures and rela-
tional information, such as clustered graphs.

Keywords—Focus + context, smooth structural zooming, in-
clusion tree layout, visual complexity, level of detail, mental
map, animation, software design process

1 Introduction

The ability to effectively visualize very large amounts of
relational information is becoming increasingly important.
The size of datasets is increasing rapidly, whilst the majority
of computer displays are around the single megapixel mark,
with multi-megapixel large-scale displays being expensive
and cumbersome, despite becoming more prevalent. In ad-
dition, the amount of bandwidth available to the human per-
ceptual system is limited. Both of these reasons mean that
the amount of data which can be effectively visualized at
any given time is limited. This is a fundamental problem in
information visualization known as the detail-context trade-
off — in any fixed size display only small amounts of infor-
mation can be displayed at high detail, resulting in a lack of
context (and vice-versa).

This problem is generally resolved by using geometric

zooming techniques, which fall into two broad categories,
distortion and rapid zooming. Distortion techniques include
Focus + Context techniques such as the fisheye lens, hyper-
bolic browser and perspective wall [3]. These involve dis-
playing a central focus region at full magnification, so that
details in the data may be easily seen, and a surrounding
context region at lower magnification, so that only a general,
high-level structure of the data is seen. The user investigates
and explores the data by moving the focus region, and re-
tains their overall location in the visualization by using the
context region. Rapid zooming techniques include “Zoom-
ing User Interfaces”, such as Jazz [1] (and its predecessor,
Pad++) and GeoZUI3D [15] [14]. Rapid zooming attempts
to utilise the user’s mental map and short term memory to
provide context, by only showing a high detail focus region
but allowing users to very quickly and easily zoom out to a
low-detail context view and then zoom back in to the high-
detail region of interest.

We present an alternate method of performing focus +
context called smooth structural zooming, where context
information is summarised or abstracted rather than being
distorted or rapidly accessible. Smooth structural zooming
has the ability to navigate and explore data too large to be
fully displayed, whilst maintaining an approximately con-
stant level of visual complexity, good visualization aesthet-
ics and animation to preserve the user’s mental map.

We illustrate the use of smooth structural zooming by
applying it to the particular case of h-v inclusion tree lay-
out visualizations. Section 1.1 gives a brief introduction to
inclusion tree layouts. Section 2 explains the concepts of
smooth structural zooming at a general level, followed by
the specific application to h-v inclusion tree layouts in Sec-
tion 3. Section 4 contains anticipated future enhancements
and improvements to smooth structural zooming.

1.1 Inclusion tree layouts

We are interested in applying this technique to relational
information which can be modelled by graphs, and in par-



Figure 1. An example of a clustered graph.

ticular clustered graphs, which support varying levels of
detail by defining a recursive clustering of related nodes.
Clustered graphs are most often visualized by drawing the
contents of each cluster inside a rectangle representing that
cluster, as shown in Figure 1. This allows clusters to be
summarised by simply drawing the cluster rectangle with-
out its contents. Although we would like to apply smooth
structural zooming to clustered graphs, at this initial stage
of our investigation we instead consider the simpler case of
smooth structural zooming of inclusion tree layouts, which
are effectively clustered graphs with no edges.

The inclusion tree layout convention [5] is an alternate
method of drawing trees where the parent–child relation-
ship is visually represented by the child node being com-
pletely contained within the parent node. For simplicity,
nodes are usually represented as rectangles. The familiar
classical tree layout convention draws the tree in a “level”
fashion, where the � coordinate of a node is proportional
to its depth � from the root, with lines drawn between the
child and parent nodes. Figure 2 illustrates an example tree
in both the classical and inclusion conventions.

In addition, the inclusion tree layout convention is sim-
ilar to treemaps [8], a space-filling technique for drawing
trees in the plane. Figure 3 shows an example treemap of
the tree shown in Figure 2. Treemaps tend to be used more
commonly where some statistical data is associated with the
nodes, and treemap algorithms are geared towards using this

(a) Classical Layout Convention

(b) Inclusion Layout Convention

Figure 2. An example tree in classical and in-
clusion layout conventions.



Figure 3. Treemap for the tree shown in Fig-
ure 2.

data when computing the layout. We use inclusion layouts
as we are more concerned with the structure of the nodes,
however, since treemaps can be considered to be inclusion
trees with no margins around the internal nodes, the ideas
presented in this paper are also applicable to treemaps.

One disadvantage of the inclusion tree layout is that it
does not scale well to very deep trees. It can require expo-
nential area (or exponentially small resolution) in terms of
the number of nodes, which means that in a practical sense
it is not very useful for trees with depth greater than about
4 or 5. Thus it is very amenable to a dynamic navigation
system such as that provided by smooth structural zoom-
ing. In addition, the hierarchy of the tree allows for natural
summarising of context information by displaying the ap-
propriate non-leaf node, rather than the full structure of the
sub-tree below the non-leaf node.

Our smooth structural zooming method for inclusion
trees involves allowing the user to expand nodes to reveal
their children nodes, with the system compensating by col-
lapsing the least recently used expanded node. The system
can also zoom in to deep trees when necessary, and uses an-
imated transitions to preserve the user’s mental map when
adjusting the layout of nodes in the display.

This technique is similar to that employed by Spacetrees
[11] and Degree of Interest Trees (DOI Trees) [2], except
we are concerned with inclusion trees rather than classi-
cal node-link trees. We do not consider the performance of
our technique compared to classical tree navigation systems
such as Spacetrees or DOI Trees. This is because inclusion
trees are required in order to support clustered graphs, but
classical tree systems are generally not appropriate for the
visualization of the hierarchy of clustered graphs. Although
DOI Trees allow other edges to be shown in addition to the
main hierarchy edges, the relevant edges are only visible
when the user points at a node, and the edges aren’t used at

all in the layout of the tree. Nevertheless, the experimental
evaluation of Spacetrees [11] is encouraging, as it supports
the ideas of summarising the context information and ani-
mating view transitions. A thorough evaluation of smooth
structural zooming will be carried out at a more appropri-
ate stage of the project, such as when it has been applied to
clustered graphs, rather than at this early stage.

2 Smooth structural zooming

Smooth structural zooming aims to facilitate the user’s
exploration of data by providing interactive ‘structural
zooming’. Structural zooming differs from the more com-
mon ‘geometric zooming’ techniques by showing different
parts of the data at different levels of detail, rather than ge-
ometrically distorting the visualization. Smooth structural
zooming is concerned with performing structural zooming
in a fashion which preserves the user’s mental map whilst
navigating through the data. In particular, the specific re-
quirements of smooth structural zooming are:

� changing the level of detail, that is, which parts of the
overall data are to be displayed,

� display the data without distortion, while still allowing
the user to ‘zoom’ or concentrate on specific areas,

� preservation of the user’s mental map between visual-
izations of different levels of detail,

� constant level of visual complexity, and

� consistently good layout and presentation of the data.

2.1 Detail and visual complexity

We say that a visualization has an intrinsic level of detail
and a level of visual complexity. The level of detail (or sim-
ply ‘detail’) indicates the amount of data which is present
in the given visualization, while the level of visual com-
plexity (or simply ‘visual complexity’) indicates how many
visual elements or attributes are being used to present this
data. The greater the amount of data displayed, the greater
the detail, and similarly for visual complexity. Detail is a
double-edged sword — one needs detail in order to be able
to gain insight into the data, yet too much detail results in a
lack of available screen space and poor resolution (in terms
of the space allocated to each data element). This is the crux
of the classic detail–context tradeoff.

Detail may be quantified by a measure, for example,
the number of nodes or leaves (for tree data), and simi-
larly visual complexity may be quantified, for example, by
the number of graphics primitives used. Different visual-
izations of the same data at the same level of detail may



(a) Classical (b) Excessive

Figure 4. A small tree (a section of the DBT
from Figure 5), shown using classical nota-
tion and an excessive notation. The same
data is present in both, but the excessive no-
tation has a higher visual complexity.

have different visual complexities. For example, Figure 4
shows a small tree using a classical notation and a notation
which is deliberately excessive. The same data is present in
both visualizations, but the excessive notation clearly has a
higher visual complexity. Nevertheless, for given data there
are bounds on the possible complexities. In particular, we
consider the visual complexity of a higher detail visualiza-
tion to always be greater than the visual complexity of any
lower detail visualization. More formally, if � �������	� is the
visual complexity at detail

�
with visualization technique

�
,

then we have � �
�������� � ����������� � � �
�����

, for varying levels
of detail

�������
� and all arbitrary visualization techniques�

,
�
,
�
.

2.2 Navigation technique

Our goal is a system which maintains an approximately
constant level of visual complexity, while allowing the user
to visualize and navigate relational data that would ordi-
narily require a much higher visual complexity. Note that
distortion techniques, such as the fish-eye lens, have higher
visual complexity — rather than drawing all of the context
data in a distorted fashion, it is better to summarise that con-
text data, giving a lower visual complexity.

Since the user is the driving force behind the investiga-
tion of the data, the system must provide operations will
support the user in directing the navigation through the data.
These user operations allow the user to choose the data that

is to be included in the visualization, but currently isn’t.
That is, they are increasing the detail of the visualization
(detail-increasing operations), and therefore by necessity
also increase the visual complexity. It is the role of the sys-
tem to maintain the approximately constant level of visual
complexity. This means that the system must reduce the
detail and visual complexity in response to the user’s in-
creases. In particular, for every type of detail-increasing op-
eration available to the user, a corresponding inverse detail-
reducing operation must be available to the system.

When the user increases the detail by performing an op-
eration (the stimulus), the system must determine the:

� Detail reducing condition: If the detail is now too great
as a result of the stimulus. The simplest method for
determining this is if the detail measure has risen above
some pre-determined threshold value.

� Response: If the detail reducing condition is true, how
the system should respond to bring the detail back
down to acceptable levels — without disturbing the
user’s navigation or investigation process. Notably, the
response cannot include the inverse operation of the
stimulus.

It is also possible to allow the user access to perform the
detail-decreasing operations. The user will arguably always
have a better idea of their overall goal than the system can,
and thus may choose to anticipate a better “response” to
a stimulus they are yet to perform. For example, prior to
expanding a node the user may choose another large ex-
panded node to manually collapse, in order to make space
for the node to be expanded, and to ensure that the particular
node they have selected is collapsed (rather than whichever
node is selected by the system). The system doesn’t re-
spond to any detail-decreasing operations performed by the
user (even though the symmetric thing to do is increase the
detail somehow).

The layout of the visualization must be updated as the
user changes their view of it, usually by using some sort
of layout algorithm for the data involved (for example, a
graph drawing algorithm). This is because as with any vi-
sualization, the quality must be maintained — that is, the
visualization must have good aesthetic properties, be un-
derstandable, facilitate insight, and so on. As the data being
visualized is changing, so too must the layout change in or-
der to accomodate this.

As these changes in visualized data and layout are (gen-
erally) discrete operations, care must be taken to ensure that
the user always experiences smoothly animated transitions
between the different views. In addition, simple animation
techniques such as linear interpolation may not be sufficient
[6], and so layout specific animations are required for each
type of operation which may be performed. It is preferable



for the animation of an inverse operation to be the time-
reversed animation of the original operation, but this is not
essential.

Sometimes the system may need to perform more than
one operation in order to bring the visualization into an ac-
ceptable state. For example, both a detail-increasing and
a detail-reducing operation may need to be performed. In
this case, there is a choice between animating these opera-
tions consecutively or animating them concurrently. When
animating consecutively, there is the additional issue of the
order in which the animations should be performed. An-
imating consecutively can be confusing because when an
animation ends, the user is not sure if another will be start-
ing or not, and may attempt to continue navigating only to
find that another animation has begun. This may be alle-
viated by increasing the speed of the animations such that
the total animation always takes some fixed amount of time,
however this isn’t feasible if there are many animations to
be performed. Animating concurrently tends to be more vi-
sually appealing, as users can still follow the movement of
the nodes when several animations are occuring. However
it can get confusing if there are more than approximately
3 animations being performed concurrently, and so in these
cases a combined or hybrid approach is expected to be best,
where a strategy is used for choosing groups of animations
to be performed concurrently, and these groups are then ani-
mated consecutively. Currently our system performs all an-
imations concurrently, as there is a maximum of 3 possible
animations at any given time.

3 Application to inclusion tree layout

We now apply the smooth structural zooming concepts
from Section 2 to the case of tree visualization and nav-
igation. In particular, we examine the inclusion tree lay-
out convention, due to its pivotal role in the visualization
of clustered graphs. In Section 3.1 we introduce the sam-
ple data used, that of design behaviour trees (DBTs). This
is followed in Section 3.2 by details of the inclusion tree
layout algorithm used. Finally, Section 3.3 describes the
application of smooth structural zooming to inclusion tree
layouts.

3.1 Design behaviour trees

In the field of software engineering, one of the chal-
lenges presented by the ever-increasing size and complexity
of modern software systems is that of designing such soft-
ware systems from the ground up in an efficient and error-
free way. Visualization has often played an important role
in the software design process, for example, data-flow dia-
grams and Unified Modelling Language (UML) [13], and at
a somewhat lower level, flowcharts and Nassi-Shneiderman

Figure 5. The Mine Pump DBT using a classi-
cal layout convention.

diagrams [10]. However, these visualization techniques
have very rarely explicitly considered the non-trivial task
of scaling up to very large software systems.

One technique which does address this concern is that of
design behaviour trees, or DBTs [4]. In this paradigm, the
system designer creates behavioural models of small, indi-
vidual parts of the system. A process called genetic soft-
ware engineering is used to merge these individual DBTs
into a large overall DBT for the entire system. This is then
used as a basis of the software architecture, allowing the
system to be built directly from its functional requirements,
rather than the more traditional activity of building a system
which satisfies those requirements. This helps to support the
design of large software systems, but doesn’t address the
problem of visualizing large software architectures. In fact,
the overall software design DBT can easily be too big to
completely visualize on-screen, even if a large-scale multi-
megapixel display device is used, and this is our motivation
in visualizing them using smooth structural zooming for in-
clusion trees.

The size of a DBT depends on the size of the soft-
ware system it describes, and current examples range from
around 20 nodes to several thousand. A typical DBT is
shown in Figure 5. This DBT describes the operation of
a software system controlling a water pump in a mine.

3.2 Inclusion tree layouts

The formal definition of an inclusion layout for a tree �
is a rectangle ��� in the plane ��� for each node � of � , such
that



(b) Horizontal

(a) Vertical

Figure 6. The two different types of node ar-
rangements considered.

� if � has a child � then ��� is within ��� , and

� if � has children � and � then the rectangles ��� and
��� do not overlap and are separated by a distance of
at least

�
.

We are interested in inclusion layouts that have a small over-
all size given sizes of the leaf nodes. This is because, in
practice, nodes must contain text and the available screen
space is limited.

When evaluating the size of a rectangle we use the min-
imum enclosing square size measure, which gives a size of� ��� � �

�
	����� ��� �
�
�

for a rectangle of width
�

and height
� . Empirical results suggest that in practice this size mea-
sure gives good results for inclusion layouts [12].

The fundamental problem for inclusion layout is as fol-
lows:

Minimum Inclusion Layout Problem (MILP):
Given a tree � and a width � � and height � � for
each leaf � of � , find a minimum size inclusion
layout for � such that for each leaf � , the dimen-
sions of � � are � ��� � � .

If we consider the tree in which every non-root node is a
leaf, we can see that MILP is equivalent to a 2 dimensional
bin packing problem, and is thus NP-hard [9]. However,
this can be avoided by allowing only two possible ways
of arranging the children of a node, horizontal and verti-
cal, as shown in Figure 6, called h-v arrangements. In this
restricted case of h-v arrangements (and integer node di-
mensions), we use a dynamic programming approach which
solves MILP in polynomial time [5]. Figure 7 shows the re-
sult of applying this inclusion tree layout algorithm to the
Mine Pump DBT from Figure 5.

We observe that inclusion trees tend to be poor at visu-
alizing chains of nodes with (out) degree of 1, as the nested

Figure 7. The Mine Pump DBT using an inclu-
sion layout convention.

rectangles and margins waste screen space and add unnec-
essary complexity to the visualization. A better solution for
the inclusion layout convention in this case is to ‘compress’
each of these chains of nodes into a single representative
node. A visual cue such as a gradient may be applied to
the representative node, informing the user that some infor-
mation has been compressed in order to improve the visual-
ization. In addition, the representative node may contain a
summary of the text from the compressed nodes. Figure 8
shows the results of applying chain compression to the Mine
Pump DBT from Figure 7. From Figure 8 we can see that
the inclusion layout is easier to understand with chains com-
pressed, although a visual cue would be useful to regather
some of the lost information and no text summaries have
been generated for the representative nodes.

3.3 Smooth structural zooming technique

This section describes the application of our navigation
technique to the specific case of inclusion layout trees.

The detail measure used is the number of leaf and col-
lapsed nodes visible, although a different measure could be
used, most notably the number of nodes (including internal
non-leaf nodes). However when exploring deep trees while
using the number of nodes as the detail measure, much of
the screen space is used by non-leaf nodes, which tend to
increase the visual complexity and clutter the display. For
this reason we use the number of leaf and collapsed nodes,
despite the two measures being very similar.



Figure 8. Results of applying chain compres-
sion to the Mine Pump DBT shown in Figure 7.

The detail-increasing operations available to the user are:

� expanding a node, revealing its child nodes and in-
creasing its size to accomodate these children, and

� zooming out a level, allowing the user to see parts of
the tree previously obscured by the system zooming in.

The detail-decreasing operations available to the system
are:

� collapsing a node, hiding its children and returning to
its original size, and

� zooming in a level, obscuring outer regions of the tree
(generally containing collapsed nodes), allowing the
user to concentrate on the central region of expanded
nodes.

Zooming is handled by keeping a current pseudo-root node.
The system ensures that the pseudo-root node (and thus ev-
erything inside it) is visible on the screen by scaling the
visualization such that the pseudo-root node fills the screen
(preserving aspect ratio). Zooming out by a level involves
changing the pseudo-root to be the parent node of the cur-
rent pseudo-root. Zooming in by a level moves the pseudo-
root to its child which is an ancestor of the most recently
expanded node. Thus the pseudo-root is always an ancestor
of the most recently expanded node.

The response of the system to zooming out:

� cannot include zooming in (as this would be idempo-
tent), but

� may include the collapsing of any nodes.

The response of the system to the expanding of a node:

� cannot include the collapsing of that node or any of its
ancestors, but

� may include collapsing of any other node, and

� may include zooming in one or more levels.

There is an important asymmetry between the two detail-
decreasing operations available to the system. Collaps-
ing a node does not lower the data availability, since af-
ter performing the operation, all of the other nodes are still
available to be expanded, as is the just-collapsed node (and
zooming out is still possible). However, zooming in does
lower the data availability, because now some nodes may be
outside the visualization, precluding their being expanded.
Thus the user-controlled zoom out operation is absolutely
essential to allow the user to return to those hidden nodes at
some later point.

In response to expanding a node, the system must decide
which nodes to collapse (if any), and how many levels to
zoom in (if at all). If there are expanded nodes available
to be collapsed, the system will consult a queue of nodes
in order to find the least recently used (LRU) nodes. As
many nodes are removed from the queue and collapsed as
is necessary to reduce the detail to an acceptable level. Af-
ter a node is expanded, it is added to the end of the queue,
followed by its ancestors (in order). This means that when
collapsing nodes, the deepest possible node (respecting the
LRU queue) which reduces the detail sufficiently will be
used. However, if there are no nodes available for collaps-
ing (that is, all expanded nodes are ancestors of the currently
expanding node) then zooming in is the only recourse, and
so the system should zoom in as many levels are necessary
to sufficiently reduce the detail. However, if this is the only
situation in which the system zooms in, the user is unable
to zoom in on (for example) two expanded siblings which
may be of interest. This can be solved by:

� Allowing the user to manually zoom-in. This solution
is somewhat inelegant, but adequate.

� Having the system zoom in earlier, while some nodes
are still expanded. However, deciding when to collapse
and when to zoom in, while both are possibilities, is a
non-trivial task. The most promising possibility ap-
pears to be limiting the size of the LRU queue to some
minimum size, which would allow some nodes to re-
main expanded whilst the view is zoomed in. How-
ever, it is complicated by the ancestors stored in the
LRU queue and the possibility of zooming in past one
or more of the expanded nodes.

When zoomed in, the layout outside the pseudo-root node
is fixed, while the layout inside it is updated and adjusted
as usual. This helps to preserve the user’s mental map, as



hidden parts of the visualization don’t change appearance
whilst out of view. There are two obvious methods for up-
dating the layout inside the pseudo-root node:

1. Recompute the layout for the entire tree, but only up-
date the positions of descendants of the pseudo-root.

2. Recompute the layout as though the pseudo-root is the
overall root of the tree.

Put another way, although only the descendants of the
pseudo-root are updated, recompute the layout using either
the actual root or the pseudo-root of the tree as the root of
the layout.

The first alternative has the major disadvantage that the
quality of the layout of the pseudo-root may be poor when
taken on its own, as the layout algorithm optimises the lay-
out of the overall tree. For example, the pseudo-root may
have an extreme aspect ratio (compared to the desired as-
pect ratio), because the inclusion layout algorithm has op-
timised the layout so that the overall tree has a good aspect
ratio.

The second alternative has the disadvantage that when
the pseudo-root is used as the root the resulting layout may
be quite different from previous layouts, resulting in large
layout changes when zooming in. However, the animation
used helps to alleviate this problem somewhat, and the ad-
vantage of having an optimal layout far outweighs this dis-
advantage. It also makes sense to use the pseudo-root as the
root of the layout computation as it is the root of what the
user can see. For these reasons our system uses the pseudo-
root as the root of the layout computations.

3.4 Animation

An animation exists for each type of operation that can
be performed, as well as for layout updates. Expanding is
performed by linearly interpolating the size of the collapsed
node between its original collapsed size and its expanded
size, followed by drawing the child nodes. Collapsing is
similar, the expanded node’s children are removed and the
size of the node is then linearly interpolated to its original
collapsed size. In both cases, changes in node sizes affects
other nodes such that no occlusions occur, for example, as
a node is expanded its ancestor nodes are also expanded as
necessary. A useful improvement would be to scale the size
of the node whilst it was expanded and its children visible,
however technical limitations prevented such an animation
in this early work. Zooming in and out is simply achieved
by linearly interpolating the clipping rectangle of the dis-
play between the old pseudo-root and the new one.

Adjusting the layout requires changing the arrangement
of one or more nodes from horizontal to vertical, or vice-
versa. This is achieved by “rotating” the children nodes

Figure 9. Rotating the child nodes to change a
node arrangement from vertical to horizontal.

about the center of the node in question, as illustrated in
Figure 9. Figure 10 illustrates the three different types of
rotation our system uses:

1. linear, which simply linearly interpolates the positions
of the children from their initial location to their final
location,

2. circular, which interpolates the positions of the chil-
dren along an elliptical arc, and

3. orthogonal, which interpolates the positions of the
children along a “Manhattan path”.

Linear and circular are subject to occlusions between mov-
ing siblings, although circular is not as prone to it. Orthogo-
nal requires the nodes to traverse a longer distance, and can
cause the size of the node to increase considerably during
the animation, but it has the advantage of avoiding occlu-
sions altogether. Somewhat surprisingly, when occlusions
do occur, they don’t appear to be a major hindrance to fol-
lowing the action of the nodes.

The video accompanying this paper [16] shows the ani-
mations used by the system on the Mine Pump DBT from
Figure 7. It shows a navigation through the DBT, illus-
trating the main features of the smooth structural zooming
system. The compressed version of the Mine Pump DBT
from Figure 8 is not used, as it is not deep enough to exhibit
zooming in. The detail measure used is the number of nodes
present, again, this is to show the zooming in operation.
This detail measure has the side-effect that some nodes are



(a)
(b)

(c)

Original
parent
node

node
parent
Final

position
Original

Final
position

Figure 10. The different types of rotation avail-
able for updating the layout of a node, (a) lin-
ear, (b) circular and (c) orthogonal. The node
is moved from its original position to its final
position along one of the indicated paths.

closed immediately after being opened in the video, how-
ever this occurs much less frequently when the more usual
number of leaf and collapsed nodes detail measure is used.

3.5 Image gallery

We now present an image gallery showing the effects and
results of the main operations of the system. In addition to
showing the actions of the system, these images also re-
inforce how valuable the animation is in smooth structural
zooming. When “jumping” directly from one image to the
next (as would be the case if animation were not present),
considerable thought and explanation is required to deter-
mine the changes that have taken place. However when
viewing the accompanying video [16] it is much easier to
follow the changes being performed on the tree.

Figure 11 shows the effect of expanding the right of the
two bottom-most collapsed nodes. We first observe that the
layout has changed such that the large expanded section is
now laid out vertically approximately in the centre of the
visualization, and its sibling is also now laid out vertically
on its right. In addition, we notice that the large expanded
section in the upper right area previously had no collapsed
nodes, but now has 4 collapsed nodes. Both displays have
a similar number of nodes, and the layout has been updated
in order to keep the new display from becoming larger.

Figure 12 shows the effect of expanding the left-most
collapsed node. In this case, the node expands to reveal 6
children, laid out vertically. However, the expanded nodes
on the right hand side have had to collapse considerably in
order to make sufficient space for this. The right expanded
node has collapsed completely, whilst the children of the
left one have collapsed, and its arrangement has changed
from horizontal to vertical. Again, the displays are similar
in detail and size.

Figure 13 shows the effect of zooming into the visual-
ization. Figure 13(a) shows what the visualization would
look like if zooming in was not used as a response, while
Figure 13(b) shows the actual visualization obtained with
zooming in enabled. We observe that there are less on-
screen nodes, and those present are larger, more easily read-
able and closer to the central node which was expanded. In
addition, the layout of the node containing 4 children is hor-
izontal rather than vertical, which is due to the layout being
computed only inside the pseudo-root node, rather than over
the entire tree.

4 Future work

This paper describes initial work into smooth structural
zooming, a new paradigm for Focus + Context display of
relational data. There are many enhancements and and con-
tinuations of this work which we are currently investigating;
some of the more interesting and promising are presented in
this section.

4.1 Layout style and algorithm independance

The current system is heavily based on the MILP dy-
namic programming algorithm, in particular the layout re-
arranging animations only work for h-v layouts. It would
be very useful if an animation system could be developed
which was independant of the particular style of layout and
algorithm being used. This would allow much more flexi-
ble algorithms, such as [7], to be used. Smoothly animating
between arbitrary layouts is non-trivial, although the graph
animation techniques presented in [6] are expected to be
useful.

The current animation techniques also don’t allow for
the possibility of changing the order of the nodes within the
horizontal or vertical layout. It is expected that results from
the area of sorting algorithm animation will be useful for
this.

4.2 Clustered graphs

Clustered graphs are a particular type of graph which
additionally have a cluster hierarchy tree imposed on the



(a) Before (b) After

Figure 11. Expanding the right of the two bottom-most collapsed nodes.

(a) Before (b) After

Figure 12. Expanding the left-most collapsed node.

(a) No zoom in (b) Zoom in

Figure 13. The effect of zooming in.



nodes. They are generally drawn with clusters of nodes in-
side their parent node, similarly to the inclusion tree layout,
with edges between the nodes routed by means of a clus-
tered graph drawing algorithm. At a simplistic level, they
are the same as inclusion tree layouts, with the addition of
edges between nodes. As a result, extending this smooth
structural zooming technique to clustered graphs would al-
low many more types of diverse data to be used.

4.3 Layout stability

Sometimes when expanding nodes (such as a set of sib-
lings of similar size), the layout algorithm changes the ar-
rangement of a fairly high level node back and forth be-
tween horizontal and vertical, which can be very distracting
and disruptive to the user’s mental map construction. Pos-
sible solutions include allowing the layout to only change
on screen once the quality of the layout is substantially im-
proved, rather than marginally improved; or using a layout
size measure which incorporates the size of the current lay-
out, allowing the notion of the “optimal” layout to be mod-
ulated by candidate layout’s similarity to the current layout
(either in terms of the h-v arrangements of nodes or dimen-
sions of the nodes).

4.4 Initial expansion

Currently, the initial display presented to the user is sim-
ply the root node in expanded form. This is because clearly
the user will always want to navigate into the root node, and
so presenting the root node in collapsed form is unneces-
sary. However, a better system would be to initially expand
the tree as much as possible. That is, perform a breadth first
search (BFS) on the tree, expanding nodes while the detail
is not too large. The user should not see this expansion oc-
curing, giving the user a better idea of what the tree is like
when they initially load it, rather than having to manually
explore the nodes near the root. The BFS may be such that
each layer is expanded simultaneously (that is, layers of the
tree are never partially expanded), and the BFS stops when
the expansion of a layer would cause the detail to be too
high; or else it may be such that nodes are expanded in-
dividually, stopping only when expanding any node would
cause the detail to be too high. Figure 14 shows an exam-
ple of the difference between only expanding the root node,
which gives poor initial user orientation, and expanding sev-
eral levels (in this case, aiming to have 10 leaves present),
giving the user a better idea of the structure of the tree in
the levels close to the root.

4.5 Mouse cursor warping

When the user is navigating through the tree, they must
often “chase” nodes with the mouse as the nodes move with

(a) Only
the root
expanded

(b) Several levels expanded

Figure 14. The difference between initially ex-
panding only the root node and expanding
several nodes.



layout changes. For example, when the user clicks on a
node to expand it, if the node moves away from its initial po-
sition then the user may no longer be pointing at that node,
even though they have not moved the mouse and are prob-
ably still interested in that node (as it was just expanded).
It would be good if the system could “warp” the position of
the mouse cursor so that it followed the movement of the
node to its final position. The transformations applied to
each node in the display could also be applied to the mouse
cursor, causing the mouse to move along with the nodes,
keeping the same relative position to the nodes. The user
should still be able to move the mouse while this is occur-
ing, although this may be problematic if the user is required
to “fight” the system’s movement of the mouse.

5 Conclusion

We have presented a new paradigm for Focus + Context
called smooth structural zooming, and an application of it to
horizontal-vertical (h-v) inclusion tree layouts (in the con-
text of Design Behaviour Trees). This paradigm allows the
level of detail shown in different regions of the visualiza-
tion to be varied by summarising or abstracting the data,
rather than geometrically distorting the visualization or us-
ing rapid zooming to make obscured regions quickly acces-
sible. It has the ability to navigate and explore data too large
to be fully displayed, whilst maintaining an approximately
constant level of visual complexity, good visualization aes-
thetics and preservation of the user’s mental map through
animation. Although our inclusion tree layout application
is currently specific to h-v layouts, it can be generalised to
arbitrary layout styles and algorithms, and to other hierar-
chical data structures and relational information, most no-
tably clustered graphs.

References

[1] B. Bederson, J. Meyer, and L. Good. Jazz: an extensible
zoomable user interface graphics toolkit in java. In Pro-
ceedings of User Interface and Software Technology (UIST
2000), pages 171–180. ACM Press, 2000.

[2] S. Card and D. Nation. Degree-of-interest trees: A compo-
nent of an attention-reactive user interface. In Proceedings
of Advanced Visual Interfaces. Trento, Italy, May, 2002.

[3] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings
in Information Visualization (Chapter 4). Morgan Kauf-
mann, 1999.

[4] R. G. Dromey. Genetic software engineering - simplifying
design using requirements integration. In Proceedings of
IEEE Working Conference on Complex and Dynamic Sys-
tems Architecture, Brisbane. IEEE, December 2001.

[5] P. Eades, T. Lin, and X. Lin. Two tree drawing conventions.
International Journal of Computational Geometry and Ap-
plications, 3(2):133–153, 1993.

[6] C. Friedrich. Animation in Relational Information Visual-
ization. PhD thesis, University of Sydney, 2002.

[7] T. Itoh, Y. Kajinaga, Y. Ikehata, and Y. Yamaguci. Data
jewelry-box: A graphics showcase for large-scale hierarchi-
cal data visualization. IBM Research, TRL Research Report,
RT0427, 2002.

[8] B. Johnson and B. Shneiderman. Tree-maps: A space-
filling approach to the visualization of hierarchical informa-
tion structures. In Proc. IEEE Visualization ’91, pages 284–
291. IEEE, 1991.

[9] S. Martello and D. Vigo. Exact solution of the two-
dimensional finite bin packing problem. Management Sci-
ence, 44(3):388–399, 1998.

[10] I. Nassi and B. Shneiderman. Flowchart techniques for
structured programming. ACM SIGPLAN Notices, 8(8):12–
26, 1973.

[11] C. Plaisant, J. Grosjean, and B. Bederson. Spacetree: sup-
porting exploration in large node link tree, design evolution
and empirical evaluation. In Proceedings of IEEE Sympo-
sium on Information Visualization 2002, pages 57–64. IEEE,
Boston, October, 2002.

[12] K. Pulo and M. Takatsuka. Inclusion tree layout convention:
An empirical investigation. In Proceedings of the Australian
Symposium on Information Visualisation, pages 27–35. CR-
PIT Vol 24, Tim Pattison and Bruce Thomas, eds, 2003.

[13] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
elling Language User Guide. Addison-Wesley, 1999.

[14] C. Ware and M. Plumlee. Modeling performance for zoom-
ing vs multi-window interfaces based on visual working
memory. In Proceedings of Advanced Visual Interfaces.
Trento, Italy, May, 2002.

[15] C. Ware, M. Plumlee, R. Arsenault, L. Mayer, S. Smith, and
D. House. GeoZui3D: Data fusion for interpreting oceano-
graphic data. In Proceedings of Oceans 2001. Hawaii, CD
ROM Proceedings, 2001.

[16] http://www.it.usyd.edu.au/˜kev/cmv03-kpulo-ssz.wmv.


