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Abstract
The configuration of parameters in simulation software is
an often overlooked aspect of the development process.
SimParm is a C++ framework that alleviates the burden
of managing configuration parameters from software de-
velopers. It has been designed to be simple, easy to use
and flexible, both when defining parameters and using
them in the simulation. Plain text configuration files are
supported, as well as overriding values on the command
line. SimParm allows interactive real-time adjustment of
parameters during the simulation — when running locally
and remotely. Furthermore, multiple users can adjust pa-
rameters, allowing collaborative exploration of the pa-
rameter space. This helps users to determine suitable pa-
rameter values for unfamiliar datasets — even when the
dataset is too large to run be run on the local worksta-
tion. This paper describes the design and usage of Sim-
Parm, and includes an example application of a simple
mass-spring simulation of a triangular mesh.
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rameters, batch, interactive, remote interactivity, collabo-
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1 Introduction
In the area of developing software simulations for use

in HPC, the main interest of the software developer is usu-
ally the mechanics and algorithms of the simulation itself,
as well as the scientific results and insights that can be
obtained from running the simulation. As a result, one
aspect of simulation code that can easily be overlooked is
the configuration of the simulation software. This is par-
ticularly true for codes that are smaller, more experimen-
tal and those just commencing development. This is a sit-
uation that is frequently found when simulation software
is developed by a single, small research groups. These de-
velopers are focused on the simulation itself, rather than a
good way to set the values of parameters in the software.

In the worst case, parameter values are hard-coded into
the source code of the simulation software. This means
that the code must be recompiled each time a user wants
to change a parameter value. This consumes additional
time and space, and is more confusing when reviewing

results, running several simulations concurrently on the
same system, and so on. The benefit of this method,
though, is that the software developer need not concern
themselves with issues such as the reading and parsing of
values from the command line, configuration files and the
like.

At the other end of the spectrum, developers may im-
plement sophisticated systems for managing runtime con-
figuration (such as a custom configuration file format), or
they might employ other libraries to do this task (such
as an XML parsing library like Expat[2]). In the former
case, the developer may spend significant amounts of time
writing code to support the configuration system, and then
maintaining that code when the configuration needs of the
simulation change. In the latter case, the developer must
learn how to use the external library, which often achieve
generality by being overly complicated for the simple task
of assigning runtime values to simulation parameters. In
both of these cases, the clarity and simplicity of the actual
simulation code is often compromised by the configura-
tion code.

One good example of support for configuration that
is provided in a toolkit is in the Message Passing Envi-
ronment Utilities (MPEU)[5], distributed as part of the
Model Coupling Toolkit (MCT)[6, 7]. However, this soft-
ware has a focus on message-passing applications, thus
limiting its generality, and is written for Fortran90, and
thus is not suitable for C++ applications.

For example, a common occurance is the need to add
a new configuration parameter that had not earlier been
considered. If the configuration system requires consid-
erable work to add this new parameter, then the devel-
oper has more incentive to simply “fudge” the system, for
example by hard-coding the parameter “temporarily”, or
by repurposing existing parameters in non-obvious ways.
The configuration system should allow new parameters to
be easily defined in a single master location.

Furthermore, choosing suitable and appropriate sim-
ulation parameters for a particular input dataset can be
difficult. This is particularly true when the dataset is un-
familiar or very large. One common reason for this is that
even when configuration systems are adequate, themodus
operandiof the simulation is to run potentially large and
long HPC jobs, which are under the control of a batch



queueing system. Initial parameters are chosen with very
little guidance, and feedback on the choice of parameters
does not occur until after the simulation has run for some
time. At this point, the parameters can be evaluated, ad-
justed, and the process repeated. This whole procedure is
time-consuming, and can be frustrating for the researcher
who would prefer a quicker and easier way of “honing in”
on suitable configuration parameter values.

This paper presents SimParm, a C++ framework which
alleviates the burden of managing configuration parame-
ters from simulation software developers. SimParm ad-
dresses all of the aforementioned problems, and has been
designed to meet the following requirements:

• Simple and easy to use in simulation code. Code
that uses SimParm is as easy to read as code that has
hard-coded static configuration parameters.

• Configuration parameters are easily and simply de-
fined in a single location in the code.

• New parameter types are easily added to the Sim-
Parm code by using object-oriented inheritance.

• Configuration parameters are statically typed but dy-
namically accessible. This provides the convenience
usually associated with dynamically typed systems
or interpreted languages, but without the perfor-
mance penalties and with the benefits of type-safety.

• Configuration file format is simple ASCII, making it
human readable and editable. Multiple configuration
files can be read in, which allows the segregation of
common options into logical groups. For example,
parameters specifying input and output data files can
be in a separate configuration file to those specifying
timesteps, epsilon cutoff values, and so on.

• Supports interactive real-time adjustment of simula-
tion parameters while the simulation is running. This
is possible not only when the simulation is running
on the local machine, but also when it is running on
remote computing infrastructure (such as a batch-
queue controlled HPC facility). This helps simula-
tion users to quickly and easily identify suitable pa-
rameter values for new or unfamiliar datasets.

• Supports collaborative investigation of simulation
parameters, by allowing multiple researchers to con-
nect to a single simulation running on HPC facilities.
As above, this helps to facilitate the determination of
suitable parameter values.

Section5presents the example application of SimParm
to a simple mass-spring physical simulation of an unstruc-
tured triangular mesh.

2 Code integration
This section describes how SimParm is used inside simu-
lation code. This is addressed in two main aspects: first,
how configuration parameters are defined, and second,
how these parameters are actually used by the simulation.

2.1 ConfigSets
The fundamental class in SimParm isConfigSet ,
which is conceptually a collection ofConfigEntry ob-
jects. Each ConfigEntry object defines a particular simu-
lation parameter. In order to define the set of parame-
ters that comprise a particular simulation, a child class
of ConfigSet is created, withConfigEntry objects
as members. For example, the following class definition
for ConfigSetRelax has two double-precision float-
ing point parameters namedtimestep andepsilon ,
and an unsigned long parameter namedmax_t .

#include "ConfigSet.hh"
class ConfigSetRelax

: public ConfigSet {
public:

ConfigEntryDouble timestep;
ConfigEntryUnsignedLong max_t;
ConfigEntryDouble epsilon;
ConfigSetRelax();

};

It is also possible to create a hierarchy of ConfigSet
classes, with each defining the necessary ConfigEntry ob-
jects. C++’s multiple inheritance means that this hier-
archy need not take the form of a tree. For example,
the following ConfigSetRunControl class defines
three boolean parameters namedrunning , finished
and autorestart , andConfigSetApplication
has eight members in total; the three inherited from
ConfigSetRelax , the three fromConfigSetRun-
Control , and two string parameters of its own.

class ConfigSetRunControl
: public ConfigSet {

public:
ConfigEntryBool running;
ConfigEntryBool finished;
ConfigEntryBool autorestart;
ConfigSetRunControl();

};

class ConfigSetApplication
: public ConfigSetRelax,

public ConfigSetRunControl {
public:

ConfigEntryString input_filename;
ConfigEntryString output_filename;
ConfigSetApplication();

};

The definition for theConfigSetRelax constructor
might look as follows:

ConfigSetRelax::ConfigSetRelax()
: ConfigSet() {

timestep.setName("timestep");
timestep.setDesc("Relax timestep");
timestep = 1.0;
timestep.setIncrement(0.1);
timestep.setMin(0.0);
register_entry(&timestep);



max_t.setName("max_t");
max_t.setDesc("Relax max timesteps");
max_t = 1000000;
max_t.setIncrement(10000);
max_t.setMin(0);
register_entry(&max_t);

epsilon.setName("epsilon");
epsilon.setDesc("Relax epsilon");
epsilon = 0.1;
epsilon.setIncrement(0.01);
epsilon.setMin(0.0);
register_entry(&epsilon);

}

This defines the string name and description for each
ConfigEntry, as well as a default value. The increment
and minimum values are advisory, and are only used in-
teractively, see Section4. Finally, a pointer to each en-
try is passed to theregister_entry() member func-
tion, which informs the ConfigSet of the presence of each
member.

Whenever a new configuration parameter is required,
it only needs to be added to the relevant ConfigSet class
definition and constructor.

In order to use the parameters from within the simula-
tion code, an instance of the ConfigSet child class must be
created. Typically this is done by declaring a static vari-
able namedconfig in the file containingmain() , for
example:

static ConfigSetApplication config;

The value of a parameter is obtained by using the func-
tion operator, that is,operator() , for example:

double e = config.epsilon();

The value of a parameter is set by using the assignment
operator with the underlying type, that is,operator= ,
as shown above in the ConfigSet constructors.

The following example code shows how easily Config-
Entries are used. It uses theConfigSetRelax param-
eters to control a relaxationfor loop. Themax_t pa-
rameter specifies the maximum number of loop iterations,
timestep specifies the amount of timeδt by which to
advance the simulation each time step, andepsilon
specifies a convergence criteria. If the timestep is deter-
mined to be too large, then it is reduced by a factor of
10%.

for (unsigned long t = 0;
t < config.max_t(); t++) {

computeForces();
actionForces(config.timestep());
if (errorsum < config.epsilon())

break;
if (errorHasWorsened())

config.timestep *= 0.9;
}

In the case of multiple inheritance, names-
pace clashes can be resolved by explicitly re-
solving the members in question, for example,
config.ConfigSetRelax::epsilon()
compared to config.ConfigSet-
Application::epsilon() .

2.2 ConfigEntrys
As shown above, each configuration parameter is repre-
sented by a single ConfigEntry object. TheConfig-
Entry class is abstract, and the functionality for each
type of parameter is provided by child classes. The fol-
lowing parameter types are currently supported:

• ConfigEntryDouble and ConfigEntry-
Float represent double-precision and single-
precision floating-point values, respectively.

• ConfigEntryInt , ConfigEntryUnsigned-
Int , ConfigEntryLong and ConfigEntry-
UnsignedLong (and so on for shorts and
long longs) represent the appropriate signed or un-
signed integer value.

• ConfigEntryBool represents a boolean value.

• ConfigEntryString represents a string value.

• ConfigEntryChoice represents an enumerated
type, that is, where the value may only be one of a
fixed set of possible choices.

The floating-point, integer and boolean based param-
eter types are straightforward and self-evident. The
string parameter type uses the standard C++ string type,
which allows access to the underlying character array via
the c_str() member function. However,Config-
EntryChoice requires more explanation. It requires
an enum to be defined, usually in a separate names-
pace, and then each of the values to be passed to the
addChoice() member function with a description. For
example, the following describes possible actions for the
simulation to take on convergence:

namespace Convergence {
enum {

nothing,
exit_program,
reduce_timestep

};
}

with the following member added toConfigSet-
Relax :

ConfigEntryChoice convergence;

and the following added to the constructor:

convergence.setName("convergence");
convergence.setDesc("Convergence action");
convergence.addChoice(Convergence::

nothing, "nothing", "Nothing");
convergence.addChoice(Convergence::



exit_program, "exit_program",
"Exit program");

convergence.addChoice(Convergence::
reduce_timestep, "reduce_timestep",
"Reduce timestep");

convergence = Convergence::nothing;
register_entry(&convergence);

The convergenceif statement would then be modified as
follows:

if (errorsum < config.epsilon())
switch(config.convergence()) {

case Convergence::nothing:
break;

case Convergence::exit_program:
exit(0);

case Convergence::reduce_timestep:
config.timestep *= 0.9;
break;

}

This is an example of the simplicity of adding a new
configuration parameter to existing code. Even for the
relatively sophisticated case of an enumerated type, both
the definition of the parameter and its use in the simula-
tion code are simple and straightforward. In particular,
the simulation code is no harder to read. It is easy to con-
ceive how another configuration option might be added to
control the action of the simulation when the error wors-
ens. This ease of configuration means that developers are
actually encouraged to write software that is highly con-
figurable, as opposed to perceiving it as a chore.

There are two additional types that are more use-
ful for interactive usage:ConfigEntryTrigger and
ConfigEntryDivider . These will be discussed in
Section4.

Adding a new configuration parameter type (for ex-
ample,ConfigEntryComplex to represent complex
numbers) simply requires creating a child class of
ConfigEntry . This child class must allocate storage
for the value of the parameter, implement functions to
get and set the value of the parameter, and implement the
necessary virtual functions to support input/output of the
parameter. As above, getting and setting the value is typ-
ically done using operator overloading.

3 Configuration files
Configuration files are a simple ASCII text representation
of a collection of configuration entries. The format is one
entry per line, of the form:

<name> = <value>

where<name> is the name of entry that was passed to
the setName() member function (with no embedded
whitespace), and<value> is the type-specific ASCII
representation of the parameter value. For ease of pars-
ing, the whitespace around the= is significant. Lines be-
ginning with a hash# are ignored as comments, as are
lines that are wholly whitespace. For the numeric entry

types, the value format is self-evident. For the boolean
entry type, the value may be integer (0 for false, anything
else for true), or it may be the string “true” or “false”. For
the string entry type, the value is all the characters un-
til a newline is reached (no quotes are required). For the
choice entry type, the value may be either the integer in-
dex in theenum, or the corresponding string name passed
to theaddChoice() member function. Generally, the
latter is preferred, in order to maximise the readability of
the configuration file. An example of a configuration file
for the above ConfigSet might be:

timestep = 1.5
max_t = 5000
epsilon = 0.001
running = true
finished = false
autorestart = true
input_filename = input.dat
output_filename = output.dat
convergence = exit_program

Reading a configuration file is a simple matter of using
the overloaded input operator (that is,operator>> ) on
the ConfigSet class. For example, a simulation code
may do the following:

static ConfigSetApplication config;
int main(int argc, char *argv[]) {

ifstream config_file("config.cfg");
if (config_file) {

config_file >> config;
config_file.close();

}

// ...
}

Although of course, typically the name of the configu-
ration file will not be hard-coded, rather, it is passed on
the command line when invoking the simulation. Further-
more, it is a simple matter to read in as many configura-
tion files as are specified on the command line. This al-
lows the segregation of configuration parameters into log-
ical groupings. For example, a certain collection of con-
figuration files might only assign values to relaxation pa-
rameters, while another collection of files assign the val-
ues of filenames to use. This allows researchers to easily
substitute the values of any arbitrary group of parameters,
without affecting the others, and so without needing to
create many different configuration files for each combi-
nation of parameters. The code to read multiple files is as
follows:

static ConfigSetApplication config;
int main(int argc, char *argv[]) {

for (int i = 1; i < argc; i++) {
ifstream config_file(argv[i]);
if (config_file) {

config_file >> config;
if ( ! config_file.eof())

cerr << "Error reading "



<< argv[i] << endl;
config_file.close();

}
}

ostream &log = cerr;
ofstream logfile(config.logfile());
if (logfile)

log = logfile;
log << "Config values are:" << endl;
log << config;

// ...
}

Note also that the values of the configuration parameters
are output using the overloaded output operator (that is,
operator<< ) of ConfigSet , as a convenient means
to record the parameters used for that invocation of the
simulation. The output format is the same as the input
format described above. In this case, the values are output
to a logfile, where the name of the logfile to use is deter-
mined by the configuration parameter namedlogfile .
If this is logfile name is not specified in any of the config-
uration files that are input, then the default value specified
in ConfigSetApplication will be used. If the log-
file is unable to be opened, then the standard error stream
will be used instead.

It is also possible to read configuration entries directly
from the command line arguments. In this case, the in-
tention would be to briefly override some values from
the configuration file(s) with temporary replacement val-
ues, without being required to create and edit a new con-
figuration file. TheConfigSet::readConfig(int
argc, char *argv[]) member function does this,
along with the code above to read in configuration files.
Command line arguments are assumed to be configura-
tion files, until an argument matching “- ” is found, after
which the arguments are interpreted as individual config-
uration entries. The individual entries may be enclosed in
shell quotes or not. For example, the following code:

static ConfigSetApplication config;
int main(int argc, char *argv[]) {

config.readConfig(argc, argv);

// ...
}

would allow the program to be invoked as

sim simple.cfg relax-conservative.cfg \
-- "epsilon = 0.01" \
output_filename = test1.out

sim simple.cfg relax-conservative.cfg \
-- "epsilon = 0.001" \
output_filename = test2.out

which would take the “simple” parameters, along with
the “conservative” relaxation parameters, and then specif-
ically override the relaxation epsilon with test values of
0.01 and 0.001, saving the output into different test files.

Figure 1: An example of a Twiddler interface.

4 Interactive use
SimParm has an interactive module known as theTwid-
dler which can easily interface with any simulation writ-
ten using ConfigSets. Twiddler is written in Java, and
provides an interface for viewing and changing the values
of the simulation parameters.

Figure1 shows an example view of a Twiddler for the
earlier ConfigSet examples. Presently, the configuration
entries are simply displayed in a vertical list (in the order
they are passed toregister_entry() ), although fu-
ture work will allow for more advanced display options.
Numeric parameters may be edited with the keyboard, or
may also be incremented or decremented rapidly using
the mouse wheel. This allows, for example, the magni-
tude of forces in the simulation to be increased gradually,
or for convergence critereon to be gradually decreased.
String parameters may be edited as expected, boolean pa-
rameters are represented by checkboxes, and choice pa-
rameters by drop-down choice boxes.

Communication between the simulation and Twiddler
is performed using standard pipes, for example, with Unix
named pipes (FIFOs), or by connecting the standard input
and output of the simulation, to the standard output and
input of the Twiddler1. Following is an example of con-
necting the simulationsim and the twiddler using a com-
bination of standard input and output, and named pipes.

$ mkfifo stdin stdout
$ sim config.cfg < stdin > stdout &
$ twiddler < stdout > stdin

Alternatively, if thetwinpipepackage[8] is installed, the
named pipes can be eliminated and the standard input and
output of both processes joined directly:

$ twinpipe "twiddler" "sim config.cfg"

1Some versions of C++ lack the ability to force named pipes to be
completely unbuffered, as such, connecting the standard input and out-
put is preferable in these cases



Figure 2: The Twiddler interface of Figure1, but with the
addition ofConfigEntryDivider s and aConfig-
EntryTrigger .

There are twoConfigEntry types that are more
specifically aimed at interactive use:

• ConfigEntryTrigger represents a “trigger”
value, that is, a parameter which may be “triggered”
to activate a certain function.

• ConfigEntryDivider represents a horizontal
dividing line, useful for visually separating groups
of entries.

Figure2 shows an example of these two types. Triggers
are used in simulation code by testing if they have been
triggered with thetriggered() member function or
by casting to abool (for example, with the statementif
(config.yield) ). If so, after the necessary action
has been performed the Trigger object must be “untrig-
gered” by calling theuntrigger() member function.
The simulation code can activate the trigger simply by
calling thetrigger() member function.

To use this feature, theConfigSet::set-
IO(istream*, ostream*) member function is
called. For example, to use standard input and standard
output,config.setIO(&cin, &cout); . This will
output the definition of the ConfigSet in question to the
provided output, allowing the twiddler to determine what
configuration parameters are present, their names, de-
scriptions, initial values and so on. The format is again
simple line-based ASCII text. The first line indicates the
number of entries present. Each subsequent entry then
takes the form:

type <type>
name <name>
desc <description>

viewable <true/false>
editable <true/false>
outputOnChange <true/false>
<type-specific-options>
end

Where<type> is a string representing the type of the
entry (for example,double , unsigned_long , bool
or choice ), <name> and <description> are the
string name and description of the entry (set in the
ConfigSet constructor), andviewable , editable and
outputOnChange are boolean options for each entry.
Theviewable option indicates whether or not the entry
should be displayed by the twiddler, thereby allowing the
developer to hide certain configuration parameters from
the display if they so desire. Theeditable option in-
dicates whether or not the entry may be changed by the
twiddler user. This allows the developer to mark certain
configuration parameters as “read-only”, for example, the
name of an input data file that has already been read in
might be of interest to the twiddler user (so they know
which dataset they are working with), but interactively
changing the value of the filename later in the simulation
does not make sense. TheoutputOnChange option in-
dicates if the value of the parameter will be automatically
updated in the twiddler display when it changes in the
simulation. The<type-specific-options> are a
set of options that are specific to each ConfigEntry type.
They follow the same basic format as the preceeding op-
tions. For example, the numeric entry types each have the
following format:

value <value>
increment <increment>
hasmin <true/false>
min <minimum value>
hasmax <true/false>
max <maximum value>

Where themin andmax lines are only present ifhasmin
and hasmax are true , respectively. The<value>
is the initial value of the entry, and<increment> is
the amount by which the value should increase or de-
crease when the mouse wheel is scrolled up or down.
If <hasmin> is true, then<min> is the lowest possi-
ble value that the entry may be set to, and similarly for
<hasmax> and<max>.

Following this definition, whenever the value of a con-
figuration parameter changes, and that parameter has the
outputOnChange option set (which is the default), a
line will be output of the form

set <name> = <value>

that is, the format is the same as the configuration file
format, except with the leading wordset . The twiddler
reads these lines as they are output, and updates the value
of the corresponding entry in the display.

Similarly, when the user changes the value of an entry
in the twiddler, a line of the same format will be output
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Figure 3: Connecting the simulation and twiddler locally,
and connecting them remotely across a network.

by the twiddler. However, the simulation must read in
these lines and update the values of the ConfigEntry ob-
jects accordingly. This is achieved by periodically calling
the ConfigSet::serviceInput() member func-
tion. This is typically performed within the main loop of
the simulation, so that interactive parameter changes are
detected and their values updated in a timely fashion. Of
course, there is a tradeoff between the delay in updating
parameters, and the amount of CPU time spent checking
for updates (which would usually be considered wasted
overhead). Checking for updates every 0.1 to 1 seconds is
generally considered to be adequate for most purposes.

The simple nature of the communication between the
simulation and twiddler allow for two additional and pow-
erful features to be implemented in an easy and straight-
forward manner. These are remote interactivity and col-
laborative use, which are discussed in the following sub-
sections.

4.1 Remote interactivity
The bi-directional data channel between the simulation

and twiddler is usually achieved by named pipes, but this
does not necessarily have to be the case. It would also
be possible to use C++ and Java networking libraries to
open a TCP/IP connection between the simulation and
twiddler, and then use these sockets for the interactive
communication. However, the abundance of networking
utilities available mean that it is usually easier to leave
the simulation and twiddler using named pipes or stan-
dard input/output, and then use such a networking utility
to connect these pipes or streams. Figure3 shows this
concept.

One common utility that is frequently used to connect
pipes to networks isnetcat[3], however, this still requires
choosing an appropriate TCP/IP port, ensuring that the
port is not blocked by firewalls, and so on. The easiest
solution is usually to use thesshprogram to connect the
simulation and twiddler. This very simply allows the sim-
ulation to run on a higher performance machine, while the
twiddler runs on the user’s desktop workstation. For ex-
ample, if the simulation namedsim used standard input
and output for interactive communication, then it could
be run on the machine namedremotehost , under local
interactive control as follows:

Figure 4: The addition of read-only monitoring “parame-
ters”.

$ twinpipe "twiddler" \
"ssh user@remotehost sim config.cfg"

The only difference between this and the earlier example
of running the simulation with the twiddler is the inclu-
sion of the ssh command to transport the standard input
and output of the simulation from the remote machine to
the local one. This makes running the simulation inter-
actively very easy, even when the simulation is running
on a remote high performance machine. It is also possi-
ble to use ssh’s port forwarding features, combined with
netcat, to tunnel the interactive communication across the
network.

Interactivity is very useful for helping to determine ap-
propriate initial values to use for the simulation configu-
ration parameters. However, for large datasets the simu-
lation is unlikely to run adequately on the local desktop
workstation (for example, it may be too slow, or may re-
quire large amounts of memory or disk). Thus, remote
interactivity is very important for allowing users to inter-
actively explore the parameter space of datasets that are
too large to run locally.

Interactive exploration of the parameter space requires
feedback on the state of the simulation. One way to do
this would be to have this information written to standard
error, so that the user can view it in the terminal window
alongside the twiddler. This is not convenient if there are
a large number of values to be monitored. A better system
is to create read-only ConfigEntry objects for each of the
values to monitor, and then set these configuration “pa-
rameters” whenever the corresponding value changes in



the simulation. This will cause the display in the twiddler
to update the values as the simulation progresses, allow-
ing the user to simply monitor the twiddler window to
adjust parameters and evaluate the simulation. Figure4
shows an example of a twiddler window with additional
monitoring values at the bottom. Section5 describes an
example where this concept is extended, allowing the ac-
tual output of the simulation to be monitored in real time,
along with the values in the twiddler.

4.2 Collaborative use
Remote interactivity is useful, but the requirement that
the twiddler be started at the same time as the simula-
tion limits its flexibility. In particular, it does not work
well with batch queueing systems. This is because the
time at which the batch job will be started is unknown,
and also on such systems it is usually not possible to ssh
directly into batch-controlled compute nodes. Although
some batch queueing systems, such as the ANUPBS sys-
tem used at the APAC National Facility, allow interac-
tive access to compute nodes throughinteractive batch
jobs[1], such systems are not commonly available. Fur-
thermore, if the twiddler is closed before the simulation
ends, then the simulation will abort with a broken pipe
error.

A better approach is to allow the twiddler to connect
to a simulation that has already been started. This con-
nection could occur at any time during the simulation and
the twiddler could be closed and the simulation continue.
Furthermore, collaboration can be facilitated by allowing
multiple twiddlers to connect to a single running simula-
tion. This allows multiple users at potentially disparate
geographic locations to work together to find good pa-
rameters for the simulation. When a value is changed in
one twiddler, that parameter is then updated in all other
connected twiddlers (as well as the simulation). Simi-
larly, the values of “output parameters” in the simulation
are updated in all of the twiddlers, so that each user can
see the state of the simulation. This form of collaboration
is similar to collaborative visualisation and collaborative
problem solving environments[4]. It works best when the
collaborating users are also able to communicate via stan-
dard means, such as telephone, teleconferencing or video-
conferencing.

The pipe-based design of SimParm makes this easy.
Instead of connecting the interactive I/O of the simulation
directly to the twiddler, it is instead connected to amulti-
plexer. The multiplexer monitors the current directory for
the creation of named pipes matching.control-*.in
or .control-*.out . When one is found, it is opened,
added to the collection of input or output pipes, and then
deleted from the filesystem. Lines output by the simula-
tion are then output to each output pipe, and lines received
from an input pipe are output to the simulation and all out-
put pipes. Thus, the multiplexer is effectively broadcast-
ing messages between the simulation and the connected
twiddlers. This situation is illustrated in Figure5.

The only additional consideration is when a new out-
put pipe is opened, the multiplexer requests the current
ConfigSet definition from the simulation by sending the

twiddler twiddler twiddler twiddler

multiplexer

simulation

Figure 5: Using the multiplexer to connect the simulation
to multiple twiddlers.

line “request definition ”. The simulation then
outputs the ConfigSet definition (as described in Sec-
tion 4), and the multiplexer outputs the definition to the
new output pipe only.

The multiplexer is currently a separate program written
in python, due to limitations in the disabling of buffering
in some C++ stream implementations. Thus, it is cur-
rently invoked as:

$ twinpipe "multiplex" "sim config.cfg" &

Thentwiddler is invoked with the--pipe command
line option, to indicate that it should create the necessary
named pipes and use them for interactive I/O.

$ twiddler --pipe

To attach a local twiddler to a remote simulation is a
simple variation on the invocations already seen. For ex-
ample:

$ twinpipe "twiddler" "ssh
user@remote simconnect <target> "

where<target> is the directory containing the running
simulation, andsimconnect is a simple shell script as
follows:

#!/bin/sh
cd "$1"
base=.control-$$
mkfifo $base.out $base.in
cat < $base.out > $base.in

This method still requires the ability to ssh or rsh into
the location where the simulation is running. Staff at the
APAC National Facility are developing aqsh program,
which is a replacement for rsh that will allow users to
obtain a shell inside their batch job (running under the
ANUPBS batch queueing system). If access to a shell
where the simulation is running is truly impossible, then
an alternative version of the multiplexer may be writ-
ten which uses TCP/IP network sockets instead of named
pipes. The twiddler could still be used as-is in this case,
using a program such asnetcat , for example:



$ twinpipe "twiddler" "nc remote port"

A future version of the multiplexer may be written in
C, and integrated directly into the ConfigSet object in
the simulation. This would be written using the standard
Unix convention offork() , pipe() anddup2() to
create a separate process that has its standard input and
output attached to the standard output and input of the
simulation. This would be integrate the twinpipe func-
tionality, thereby making it unnecessary here.

5 Sample simulation: geomslab
SimParm has been applied togeomslab, a simple

mass-spring physical simulation of an unstructured trian-
gular mesh. Figure6 shows the twiddler display for ge-
omslab.

This application uses triangular mesh surfaces in 3-
space, as such, thegeomviewpackage is used to display
these 3D meshes. Theanimatemodule for geomview al-
lows the animation of the mesh over time, which helps to
show how the mesh changes throughout the simulation.
This is superior to a generated animation in a raster for-
mat, such as Quicktime or MPEG, because it allows the
user to rotate, zoom, translate and otherwise transform the
view of the model as the animation is progressing. How-
ever, this strategy requires the mesh frames to be output
to individual files, and then animated at the conclusion of
the simulation.

The extensible nature of geomview module system
means that it is possible to write a simple module which
would take a stream of geometry files (in geomview’s
native OOGL format), and display them directly in ge-
omview. In fact, the module is a simple bash shell script,
which reads OOGL files from a named pipe, and then out-
puts them on standard output with the required geomview
commands to update the display.

#!/bin/bash
echo -n "(geometry example "
echo "{ : streamgeom })"
tmpfile="/tmp/stream-$$-$RANDOM"
trap "rm -f $tmpfile" 0
while :; do

cat "$1" > "$tmpfile"
echo -n "(read geometry "
echo "{ define streamgeom "
cat "$tmpfile"
echo "})"

done

This allows the simulation to output to the named pipe
in exactly the same way as it would ordinarily output to
individual files, but have the output appear directly in the
geomview window. This stream of OOGL output can also
easily be forwarded over the network using ssh, in the
same way as the above examples for the twiddler. When
this is combined with SimParm and its twiddler, it allows
the simulation to run on the HPC compute infrastructure,
whilst the user can see the exact state of the simulation
and control all of the parameters. This is a very powerful

Figure 6: The twiddler display for geomslab.



and flexible system, which allows the one simulation code
to support a wide range of batch and interactive use cases.

An example of the flexibility of SimParm is thegnu-
plot-compatible output that is created by geomslab. It is
very easy to create avector collection of pointers to
ConfigEntry objects to be output. The first line output is
a comment (that is, it starts with#) containing the tab-
separated names of the ConfigEntries in the vector. Then,
each timestep the ConfigEntries are output tab-separated
on a single line. The first parameter output is the cur-
rent timestep, and the subsequent parameters are a mix of
output parameters and input parameters. This very eas-
ily allows the user to generate plots in gnuplot showing
the values of the parameters over the course of the sim-
ulation, including when and how input parameters were
varied. Future work could extend this to also transmit this
plot information over pipes, which would allow the plot
to be viewed in gnuplot throughout the course of the sim-
ulation in the same way that the mesh can be viewed in
geomview during the simulation. This is a simple exam-
ple of how SimParm can easily be extended to support a
wide range of uses.

An animation file in Shockwave Flash format, show-
ing the system in action, can be found athttp://www.
kev.pulo.com.au/geomslab/movie/ . This an-
imation shows a typical interactive session with a small
test mesh. The right side of the display shows the ge-
omview window containing the coloured mesh, and the
left side shows a partial view of the twiddler, including
the more important parameters and the output parame-
ters. The actual application is more responsive than the
animation, due to the nature of the recording (and that the
simulation and twiddler were running on the same single-
cpu machine).

6 Conclusion
This paper has presented SimParm, a C++ configura-

tion framework aimed at supporting simulation software
in both batch and interactive HPC environments. Sim-
Parm provides parameters that are easy to work with at
all levels, including the C++ simulation code, plain text
configuration files and interactively on local and remote
machines. Configuration parameters are quick and easy
to add to the software, which promotes software that is
highly configurable and helps to avoid developers consid-
ering configuration issues as a chore.

SimParm is flexible in the ways it can be used, not
merely limited to those shown here. The same code that
uses SimParm can support both unattended batch jobs,
through configuration files, and can also support inter-
active exploration of the simulation parameter space. In
this interactive mode, the user is able to directly control
the simulation parameters, even if the simulation is run-
ning on a different machine. Furthermore, multiple users
in different locations can all connect to a single running
simulation and control its parameters, allowing a collab-
orative exploration of the parameters. This helps users to
determine suitable parameter values for use in configura-
tion files for batch jobs, particularly for datasets that are
new or unfamiliar.

Much of this flexibility is due to communication based
around pipes. An example application of SimParm has
shown that this pipe-based method can even be extended
to showing the actual 3D output of the simulation in real-
time as the simulation progresses.
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